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ABSTRACT. In this paper, we investigate Brady’s content semantics, which was an
early attempt to get around the infamous incompleteness of the standard axiom
systems for quantified relevant logics with regard to constant domain expansions
of ternary relation semantics. We investigate this semantic framework by showing
equivalence to a variation on a recently proposed algebraic version of semantics
due to Mares and Goldblatt.

1. INTRODUCTION

As emphasized in the historical account prefacing [16], relevant logics often
lacked a semantics. For years the propositional relevant logics yearned for a se-
mantic interpretation. The ternary relational semantics by Sylvan (né Routley) and
Meyer [16], and the algebraic semantics of Dunn [4] opened the floodgates to de-
veloping semantics generally for relevant logics. The ternary relational semantics,
with the star developed from Sylvan and Plumwood (née Routley/Morell) [17],
was the key player for relevant logicians. It was hoped this semantics could be
easily generalized into semantics for first-order logics. This hope was dealt a di-
rect blow by Fine [8], wherein it is written that the ternary relational semantics
appended with a constant domain and the usual Tarskian truth conditions for the
quantifiers validates too many formulas. That is, the logic RQ (and several re-
lated logics) presented as Hilbert style axiom systems is incomplete with respect to
the most straightforward constant domain generalization of the ternary relational
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semantics. Moreover, to this day no one knows whether or not this routine gener-
alization of the ternary relational semantics is axiomatizable.1

While the Mares-Goldbatt semantics and generalizations are yet to be developed
in the 21st century, two semantic approaches were given for which first-order rel-
evant logics were complete. The first is a seemingly unatural (or at least compli-
cated) yet genius semantics given by Fine [7]. The second, the focus of this paper,
is the content semantics developed by Brady [1, 2] (and presented in [3]). Brady’s
content semantics extends the algebraic semantic approach. In essence the content
semantics gives an admissible set of functions from a set into a algebraic structure.
The presentation of the content semantics is quite dense and complicated, involv-
ing many notational variants of essentially the same thing. The major goal of this
paper is to show that Brady’s content semantics are fundamentally similar to MG
Matrices (introduced below). A consequence of this (and the definition of the MG
Matrices) is that the MG Matrices are a simpler, more natural presentation of es-
sentially the same thing.

In what follows, we first complete the introductory material by giving some of
the historical remarks surrounding the relevant semantic systems. In Section § 3
and § 4 we introduce MG Matrices and Brady’s Content Semantics, respectively.
Then, in § 5 we show that we can construct an MG Matrix from a given structure
of content semantics, and the reverse direction is shown in § 6 (given that the MG
matrix satisfies a certain expressivity constraint).

Brady’s content semantics appears to be in part motivated by a rejection of fusion
and the intensional/Ackkermann truth constant used in algebraic semantics. These
purely algebraic operators only subtract from the naturalness of a semantics.

A content semantics is essentially an algebraic-style semantics with-
out those algebraic operators which take the semantics towards more
or less conventional algebraic theories and away from being a more
or less direct semantics of the logical concepts. [1, p. 111].

Brady distinguished his content semantics from other kinds of semantics. Content
semantics differs from the Meyer, Dunn, Leblanc [15] semantics because in their
structures any defined algebra that extends the propositional structure is “a trivial
one in that all interpretations I satisfy the trivial condition, I(A) ∈ T, for all senten-
tial instances A of quantificational axioms, where T is the truth filter” [1, p. 114].
Furthermore, the content semantics is not a generalization of the usual algebraic
semantics for first-order logics.

[T]he type of semantics presented here is different from the three
types of classical algebraic semantics that have been used, viz the
Rasiowa and Sikorski semantics using unrestricted generalized meets
and joins. . . , the Halmos semantics using polyadic algebras. . . , and
the Henkin-Monk-Tarski semantics using cylindric algebras. . . [1, p.
114]

1Though, it is the case that we know some things: its set of validities is closed under γ, as shown by
Kripke [18] using semantic tableaux.
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In particular, predicates aren’t modeled as truth functions but as content functions:
that is, functions from sequences of objects to contents.

The main Difference in our semantics is that n-place functions from
Dn to C are used to interpret n-place predicates, where D is the do-
main of individuals and C is the set of contents. [1, p. 114]

The use of content functions in Brady’s semantics, as we will see below, requires
keeping track of each occurrence of a free variable in a formula. We show that the
structure of content functions can be reformulated equivalently as ω-ary functions
similar to propositional functions.2 This links the semantics to Halmos’ polyadic
algebra [10] and the Mares-Goldblatt semantics [13], the latter of which the MG
Matrices below are motivated.

2. LANGUAGE AND FORMULAS

The language Fm is defined inductively as usual. Atomic formulas are defined
out of a set of terms Term, which is the union of:

• A denumerable set of variable letters Var, denoted by x, perhaps with sub-
scripts.

• A set of name constants Con.

and predicate letters Pred, each of which is denoted by P (perhaps with decorations),
each of which is assigned a natural number as arity, made explicit as a superscript
where necessary. Atomic formulas are of the form Pn(τ1, . . . , τn) – where P has
arity 0, it is a propositional constant. The set of predicate letters of arity n is denoted
Predn.

Out of atomic formulas are constructed complex formulas by applications of
the connectives ¬,∧,∨,→ (of arities 1,2,2,2, respectively) and quantifiers ∀, ∃ in the
usual way. A formula A is said to have a variable x free when some subformula of
A includes an occurrence of x which is not in the scope of a quantifier.

A,B, . . . will serve as metavariables over formulas.

3. MG MATRICES

3.1. Algebras. The MG Matrices are a matrix generalization of MG algebras intro-
duced in [20]. These aim to capture an algebraic core found in the Mares-Goldblatt
interpretation of the quantifiers in relational frames. This Mares-Goldblatt inter-
pretation was introduced for the quantified relevant logics RQ and QR in [13], and

2This is required given how Brady defined his models. He could have defined them to employ ω-
ary propositional functions taking variable assignments. Instead, however, Brady tied his various
assignment and interpretation functions quite closely to the syntax, requiring us to bidge the gap.
This bridge-building is the cause of much of the work we need to do here.
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for quantified modal classical logic in [14].3 The MG Matrices (and algebras) cap-
ture the essence of the Mares-Goldblatt interpretation of the quantifiers: a quanti-
fied formula ∀xA is interpreted as an (admissible) element which (i) entails each of
its instances, and (ii) is entailed by anything satisfying (i).

Definition 3.1 (BB Matrix). A BB matrix is a tuple ⟨⟨A,¬,∧,→⟩,D⟩ with D ⊆ A
such that:

(1) ⟨A,¬,∧,∨⟩ is a DeMorgan lattice, where a ∨ b = ¬(¬a ∧ ¬b), with a lattice
order ≤ defined as usual (i.e., a ≤ b iff a ∨ b = b iff a ∧ b = a)

(2) if a ≤ b then c → a ≤ c → b
(3) if a ≤ b then b → c ≤ a → c
(4) a ≤ b iff ∃x ∈ D (x ≤ a → b)

Definition 3.2 (BB Algebra with t). A BB algebra with t is a tuple ⟨A,¬,∧,→, t⟩
satisfying (1)–(3) of definition 3.1 and the following:

(4’) a ≤ b iff t ≤ a → b

Combining the previous definitions, we obtain BB Matrices based on BB Alge-
bras with t.

Definition 3.3 (BB Matrix with t). A BB Matrix with t is a tuple ⟨A,D⟩ where A is
a BB Algebra with t, D ⊆ A is such that:

[t) = {a ∈ A | t ≤ a} ⊆ D

For the main results of the paper, we only use BB Matrices, though it should be
noted certain things are simplifed by having t around.4

The logic BB can be given a Hilbert-style axiomatization as in [12, 11], wherein
we find a strong motivation for the logic. It is fairly straightforward to show that
BB is sound and complete w.r.t. the class of BB matrices, fixing (propositional)
interpretations so that a formula is satisfied on a matrix-interpretation pair just in
case the value of the formula belongs to D.

The following definitions instantiate a matricial variant of the MG Structures
of [20].

Definition 3.4 (MG Matrix). An MG Matrix is a tuple A = ⟨AN, AC, D, PF, h⟩ where:
(1) AN is a BB Matrix. (the seam)
(2) AC is a complete lattice-ordered matrix of the same type as AN.5 (the nugget)
(3) D ̸= 0.
(4) PF ⊆ AN(Dω) such that:

(a) For any φ ∈ PF, there is a ¬φ ∈ PF, where for every f ∈ Dω ¬φ f = ¬N(φ f )

3It has been found a powerful tool for first-order relevant logics, and was extended to a wide range
of logics for relational frames [6], neighbourhood frames [21], propositionally quantified relevant
logics [9], and identity [19, 5].
4For instance, with this we don’t need constraing (5)(d) in Def. 3.4 below.
5Superscripted C,N distinguish in which lattice meets and joins are evaluated.
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(b) For any φ, ψ ∈ PF, there is ⊗(φ, ψ) ∈ PF, for ⊗ ∈ {→,∧} where, for any
f ∈ Dω, (φ ⊗ ψ) f = φ f ⊗N ψ f

(c) For every n ∈ ω, there is ∀n, ∃n ∈ PF (note the requirements below).
(5) h : AN −→ AC is a homomorphism where:

(a) a ≤N b ⇔ h(a) ≤C h(b)
(b) DN = h−1DC (i.e., h is a matrix homomorphism)6

(c) The following identities hold (where ⊗ ∈ {→,∧,∨}):

h(¬N(a)) = ¬Ch(a)

h(a ⊗N b) = h(a)⊗C h(b)

h((∀n φ) f ) =
C∨
{a ∈ ran(h) : a ≤C

C∧
f ′∼n f

h(φ f ′)}

h((∃n φ) f ) =
C∧
{a ∈ ran(h) :

C∨
f ′∼n f

h(φ f ′) ≤C a}

(d) If {h(φ f ′) | f ′ ∼n f } ⊆ DN then (∀n φ) f ∈ DN.7

Let’s unpack this definition a bit, to see how the above structures can be under-
stood as, as we’ve claimed they are, a matricial variant of the MG frames to be
found in [13].8 The key move for our purposes here is that in an MG frame, we
have both a set of points W (along with its powerset wp(W)) as well as a set of
admissible propositions Prop where we may have that Prop ⊊ P(W). Elements of
Prop serve as interpretants of closed formulas, and open formulas are interpreted
by functions taking variable assignments Dω into Prop – the set of such functions
is designated PropFun, and is also allowed to omit some functions in PropDω

, as
long as there are enough to interpret all open formulas. The key move here is that
the divergence between Prop and P(W) allows one to interpret the quantifiers as
something other than simple intersections and unions, which move leads to Fine’s
[8] incompleteness result. Instead, we can define an operation to interpret formulas
like ∀xA whose value is computed in terms of the intersection of the values of A
(which inhabits P(W), but need not inhabit Prop), but which must inhabit Prop.
That is, we can see P(W) as a completion of Prop (as a lattice), and interpret quanti-
fied expressions in the latter while appealing to the structure of P(W) to pin down
the correct interpretation.

MG Matrices capture this move by introducing a set AN which stands in for Prop
and another, AC, which stands in for P(W). We require that AC be a completion (by
the matrix homomorphism h) of AN which preserves the propositional operators,

6This is the distinctive feature of MG matrices, and no such condition is required in the more general
algebraic setting.
7This condition is needed to ensure that the set of formulas satisfied in a model on an MG matrix is
closed under the rule of universal generalization, i.e. that if A is valid on the algebra, then so is ∀xA.
8For further details of how the MG Matrices/Algebras are related to the Mares-Goldblatt interpreta-
tion the reader is directed to [20].
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and which satisfies two further equations w.r.t. h – namely, the last two displayed
equations in condition (5.c). These equations directly express the interpretation of
quantifiers introduced in [13], but in this more general matrix setting. The other
conditions are there to ensure that we can interpret formulas in AN (with PF being
our intermediary, as in PropFun in MG frames). The superscripts on the order,
meets, and joins, are there to indicate that they are to be interpreted as in AC, where
all the desired meets and joins are guaranteed to live.

With this background in mind, let us fix the definition of models.

Definition 3.5 (MG Model). An MG Model is a tuple M = ⟨A, M⟩ where M is a
multitype function, of types Con −→ D and Dn −→ AN, and for any f ∈ Dω we
define M f : Term −→ D by M(c) = c for constants and M f (xn) = f n for variables.

Moreover, M is used to construct a homomorphism J−KM : Fm −→ (AN)
(Dω) such

that:9

JP(τ1, . . . , τn)KMf = M(P)(M f (τ1), . . . , M f (τn))

J⊗(A1, . . . ,An)KMf = ⊗(JA1, KMf , . . . , JAn, KMf ) for ⊗ ∈ {¬,∧,∨,→}

J∀xnAKMf = (∀nJAKM) f

J∃xnAKMf = (∃nJAKM) f

For a model ⟨A, M⟩ (with M constructed from M), we define ⊨A,M
f A to denote

JAKMf ∈ D. We say that ⊨A,M A iff ⊨A,M
f A for each f ∈ Dω. Finally, ⊨A A just in

case ⊨A,M A for each M based on A.

4. CONTENT SEMANTICS

Brady’s presentation of the content semantics is often over-notated: he defines,
in essence, several notational variants and setting conditions with distinct variants.
The most significant class of these variants correspond to the (admissible) content
functions he introduces.10 Much of our effort is in reducing content functions to
propositional functions, to allow for simple comparison. A content function, more
specifically, is a function from ordered n-tuples of individuals into the set of con-
tents. In particular, for any positive integer n we have a set of functions from Dn

into C, for the domain of individuals D and the contents C. We denote the set of
such n-ary functions in a model structure Fn. For any given model structure, we
define F =

⋃{Fn | n ∈ N}. Note that F0 is a set of constant functions, so for
convenience we will just assume that F0 ⊆ C.

9We write J−KMf instead of J−KM( f ), where convenient.
10The term content functions is our own, chosen to contrast with propositional function. Note also: the
set of functions is not guaranteed to be full — that is, it needn’t contain every such function — and so
the content semantics includes the power of general frames. This is a key element in the difference
between the most straightforward constant domain extension of ternary relational semantics, see,
e.g. [8], and ones with the Mares-Goldblatt interpretation, where fullness is also not assumed.
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The set F is required to be closed under many operations. For negation, we have
a unary function ∗ on C, from which we define the following: where Fn ∈ Fn,
Fn∗(a1, . . . , an) =d f Fn(a1, . . . , an)∗. For convenience, we will write a⃗n to represent
a list of ai’s of length n. For any binary ⊗ ∈ {⊔,⊓,⇒}, for n-place Fn and m-place
function Gm, we define the n + m-ary function (Fn ⊗ Gm) by (Fn ⊗ Gm)(⃗an, b⃗m) =d f

Fn (⃗an) ⊗ Gm (⃗bm). Note that each occurrence of a free variable in a formula, or
rather a function corresponding to a (set of) variables, is treated separately.

For the quantifiers, we need to introduce a little more machinery. Let ⟨⃗j⟩m denote
an ordered set of positive integers with length m. Given m ≤ n, a⃗n−m, and b ∈ D,
we define b/⟨⃗j⟩m (⃗an−m) as the sequence of elements of D consisting of b in each of
the ⟨⃗j⟩m positions, and elements of a⃗n−m in the remaining positions, keeping the
order. For example, if ⟨⃗j⟩2 = {1, 4} and a1 = a2 = c, then

b/⟨⃗j⟩2(a1, a2) = ⟨b, c, c, b⟩
i.e., substituting b into the first and fourth position. Similarly, we define an n − m-
place function Fn b/⟨⃗j⟩m by

Fn b/⟨⃗j⟩m (⃗an−m) = Fn[b/⟨⃗j⟩m (⃗an−m)]

for all a1, . . . , an ∈ D.
We define a set V to be a set of sets of ‘instances’ of functions applied to lists of

individuals. That is:

V =d f {{Fn b/⟨⃗j⟩m (⃗an−m) | b ∈ D} | n, m ∈ Z+, m ≤ n, Fn ∈ Fn, & a1, . . . , an−m ∈ D}

The generalized meets and joins interpreting the quantifiers have the domain V. That is,
e.g., the generalized meet of all instances of Fn for each b substitutes for a subset j of ‘free
variables’.11 As will be made clear, we will require C to be closed under certain generalized
meets. Namely, we require that

d
{Fn b/⟨⃗j⟩m (⃗an−m) | b ∈ D} ∈ C. We can now define the

n − m-place function corresponding to the generalized meet operation. Such a function,
written

d
{Fn b/⟨⃗j⟩m | b ∈ D} is defined by

l
{Fn b/⟨⃗j⟩m | b ∈ D}(⃗an−m) =d f

l
{Fn b/⟨⃗j⟩m (⃗an−m) | b ∈ D}

for all a1, . . . , an−m ∈ D.
The final cluster of concepts we need surround that of a variable assignment, namely a

ω-length list of elements of D. A variable assignment s : Z+ −→ D is a variable assign-
ment, the set of which Brady denotes by S, and which we will denote as Dω. We require
that if s ∈ Dω and Fn ∈ Fn, then Fn(s(i1), . . . s(in)) ∈ C, where ii ∈ Z+.

For any variable assignment s, the k-variant of s assigning b to the kth position, denoted
by sb/k is the same as s but such that sb/k(k) = b. As above, we use the relation ∼k to
denote the relation of being k-variant.

11Note here that each ai in a given instance is an element of D, and that the jth place in b/⟨⃗j⟩m (⃗an−m)

was not ‘filled in’ with either a variable or constant ‘before’ the ‘substitution’. Each list b/⟨⃗j⟩m (⃗an−m)
was created from scratch. Rather, the terminology ‘free variable’ anticipates a role in modeling for-
mulas in the interpretations to follow.
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Given a function Fn ∈ Fn and s ∈ Dω, we can define an n-ary function from positive in-
tegers to an element of C, which acts as a sort of auxiliary function with no explicit mention
of D, as follows:12

Fns(⃗in) = Fns(i1, . . . , in) = Fn(s(i1), . . . , s(in)), for all i1, . . . , in ∈ Z+

Corresponding to variables that are not free (or do not occur) is the notion of k-constancy
or independence. An expression Fns(⃗in) is k-constant if k does not occur in (⃗in), for k ∈ Z+.
If an expression Fns(⃗in) is k-constant, then Fns(⃗in) = Fnsb/k (⃗in).

Remark 4.1. Note the difference between the sequence of integers i⃗n, in which the same
integer can appear more than once, and the set of integers ⟨⃗i⟩n, which contains n different
integers without an ordering.

We can now define a model structure.

Definition 4.2 (Unreduced L-model structure). A(n unreduced) L-model structure (BBQ m.s.,
content structure) is a tuple

S = ⟨C, T, D, F,≤, ∗,⊓,⊔,⇒,
l

,
⊔
⟩

where
(1) C is a non-empty set of contents
(2) T ⊆ C is the set of true contents
(3) D is a non-empty set (the domain)
(4) ≤ ⊆ C2

(5) ⊓,⊔, and ⇒ are functions of type C2 −→ C
(6) ∗ : C −→ C
(7)

⊔
and

d
are functions of type V −→ C

(8) F is defined as above.
The conditions an unreduced L-model structure satisfies are divided into closure condi-
tions and semantic postulates.

Closure conditions (on Fn):
(c1) If Fn ∈ Fn, then Fn∗ ∈ Fn.
(c2) If Fn ∈ Fn and Gn ∈ Fm, then Fn ⊔ Gm, Fn ⊓ Gm, Fn ⇒ Gm ∈ Fn+m.
(c3) If Fn ∈ Fn and ⟨⃗j⟩m ⊆ {1, . . . , n}, then

d
{Fn b/⟨⃗j⟩m | b ∈ D} ∈ Fn−m and⊔{Fn b/⟨⃗j⟩m | b ∈ D} ∈ Fn−m.

Semantic postulates:
For c, d, e ∈ C, Fn ∈ Fn, Gm ∈ Fm, i⃗n ∈ (Z+)n, j⃗m ∈ (Z+)m, k ∈ Z+:
(p1) ≤ is a partial ordering on C.
(p2) (a) c ⊓ d ≤ c; c ⊓ d ≤ d.

(b) If c ≤ d and c ≤ e, then c ≤ d ⊓ e.
(p3) (a) c ≤ c ⊔ d; d ≤ c ⊔ d.

(b) If c ≤ e and d ≤ e, then c ⊔ d ≤ e.
(p4) c ⊓ (d ⊔ e) ≤ (c ⊓ d) ⊔ (c ⊓ e).
(p5) (a) c∗∗ = c.

12As per the definition, if n = 0, F0s = F0(∈ C).
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(b) If c ≤ d then d∗ ≤ c∗.
(p6) T is closed under ⊓ and is an ≤-upset.
(p7) (a) c ≤ d iff c ⇒ d ∈ T.

(b) If c ≤ d then d ⇒ e ≤ c ⇒ e.
(c) If c ≤ d then e ⇒ c ≤ e ⇒ d.

(p8) (a)
d
{Fnsb/k (⃗in) | b ∈ D} ≤ Fnsb/k (⃗in), for all b ∈ D.

(b) If Fns(⃗in) is k-constant and Fns(⃗in) ≤ Gmsb/k (⃗jm) for each b ∈ D, then Fns(⃗in) ≤d
{Gmsb/k (⃗jm) | b ∈ D}

(p9) (a) Fnsb/k (⃗in) ≤
⊔{Fnsb/k (⃗in) | b ∈ D}, for all b ∈ D.

(b) If Gms(⃗jm) is k-constant and Fnsb/k (⃗in) ≤ Gms(⃗jm) for each b ∈ D, then
⊔{Fnsb/k (⃗in) |

b ∈ D} ≤ Gms(⃗jm)
(p10)

d
{(Fn ⊔ Gm)sb/k (⃗in, j⃗m) | b ∈ D} ≤ Fns(⃗in) ⊔

d
{Gmsb/k (⃗jm) | b ∈ D}), where

Fns(⃗in) is k-constant.
(p11) If Fnsb/k (⃗in) ∈ T, for all b ∈ D, then

d
{Fnsb/k (⃗in) | b ∈ D} ∈ T

Definition 4.3 (Interpretations). An interpretation I on a BBQ m.s. S is a multi-type function
on predicates and variables defined as follows:
(I1) I(Pn) ∈ Fn, for Pn ∈ Predn.
(I2) I(xk), I(c) ∈ D.13

and this function is defined inductively on formulas as follows:
(I3) I(Pn(xi1 , . . . , xi1)) = I(Pn)(I(xi1), . . . , I(xi1)).
(I4) I(¬A) = (IA)∗.
(I5) I(A∧ B) = I(A) ⊓ I(B).
(I6) I(A → B) = I(A) ⇒ I(B).
(I7) I(∀xkA) =

d
{Ib/xk (A) : b ∈ D}, where Ib/xk is the xk-variant of I assigning b to xk.14

Brady shows that Ib/xk (A) has the form Fn b/⟨⃗j⟩m (⃗an−m), and thus
d
{Ib/xk (A) : b ∈ D} is

well-defined.
We say that a formula A is true on the interpretation I on BBQ m.s. S when I(A) ∈ T; valid

on S when true on every interpretation on S; valid (simpliciter) when it is valid on every
BBQ m.s. S. Brady shows soundness and completeness w.r.t. the logic BBQ.

5. BUNCHING BRADY INTO THE MATRIX

We begin by showing how to transform models build on Brady’s structures into models
built on MG matrices, preserving satisfaction. The key theorem is:

Theorem 5.1. For any unreduced L-model structure S, there is a MG Matrix A such that
for any interpretation I on S, there is a corresponding evaluation J−K : Fm −→ PF such
that JAK ∈ D iff I(A) ∈ T.

The remainder of this section is dedicated to a proof of this theorem. The general route is by
constructing an MG Matrix by taking the seam (AC) to be a certain well-behaved completion
of C (with the required operators), and taking the nugget (AN) to be the set C itself. The

13Technically speaking, Brady does not include constants. However, out inclusion of constants here
is easily handled by his L-model structures.
14A xk variant differs only in the obvious case for (I2). Note also that Brady essentially relates the
interpretation-varying semantics with satisfaction semantics.
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first thing we need to do is abstract propositional functions from Dω into propositions. In
our target structures the set of propositions is just the set C from the content semantics.
Brady’s semantics does not contain functions of the correct type, but such functions can be
obtained from Brady’s machinery.

Brady defined auxiliary functions that combines a variable assignment s (i.e., s ∈ Dω)
with a function Fn. The result is a function Fns that takes as argument a list of n positive
integers. This list of positive integers represents variables: whereas the function Fn takes
objects of D as input, Fns takes lists of positive integers. In order to obtain a propositional
function, given any Fn, we flip the fixed input.

Definition 5.2 (PFs from Brady). Suppose we have an unreduced L-model structure S

wherein Fn ∈ F and i⃗n is a n-length sequence of positive integers. We define a propositional
function Fn

i⃗
: Dω −→ C by setting:

Fn
i⃗n

f = Fn f (⃗in) for all f ∈ Dω

The set of all such functions relative to S, i.e.:

PF(S) = {Fn
i⃗n
| Fn ∈ F & i⃗n ∈ (Z+)

n}

we call the set of propositional functions generated by S.

For brevity, we often omit the natural number subscript n on the subscript i⃗n, as it is
(over)-determined by the function Fn to which it is attached.

We will define operations ¬∨,∧,→ on elements of PF(S), for a given S, by ∀ f ∈
Dω, ∀φ1, . . . , φn ∈ PF(S)

(
⊗ (φ1, . . . , φn) f = ⊗(φ1 f , . . . , φn f )

)
(where we ‘forget’ the no-

tational differences between ⊓ and ∧ and similarly for ⊔ and ∨). This ‘lifts’ the propo-
sitional operators onto the resulting propositional functions. For the quantifiers, we will
define an operator relative to the matrices we construct: that is, relative to the completion
of C. For now, we record the following.

Lemma 5.3. For any unreduced L-model structure S, the set PF(S) is closed under ¬,∧,∨,→.

Proof. Suppose that φ, ψ ∈ PF(S). Then, by the definition, for any f ∈ Dω, we have that
φ f = Fn

i⃗
f (= Fn f (⃗i)) and ψ f = Gm

j⃗
(= Gm f (⃗j)) for some i⃗ ∈ (Z+)n, j⃗ ∈ (Z+)m, and

Fn, Gm ∈ F. We want to show that φ ∧ ψ, φ ∨ ψ, φ → ψ,¬φ ∈ PF(S). We give the case for
only φ ∧ ψ: all other cases are similar.

We have that Fn f (⃗i) ⊓ Gm f (⃗j) = Fn( f (⃗i)) ⊓ Gm( f (⃗i)) by the definition of functions Fn f
and Gm f . (That is, where we write f (⃗i) for ( f (i1), . . . , f (in)).) From the conditions on
PF(S) (specifically those listed in [1, p. 117]), we have that Fn( f (⃗i)) ⊓ Gm( f (⃗i)) = Fn ⊓
Gm f (⃗i, j⃗). Since i⃗, j⃗ is a n + m-length list of positive integers and Fn ⊓ Gm ∈ F by the
closure conditions of content semantics, the result follows with (φ ∧ ψ) = (Fn ∧ Gm )⃗i,⃗j ∈
PF(S). □

For the quantifiers, we introduce a completion of the structure C for any PF(S).

Definition 5.4. Given the set of prime filters on C in a structure S (denoted here as the
set C↑), we define the set of ⊆-upsets of these elements (Ĉ = {X ⊆ C↑ | a ∈ X & a ⊆
b implies b ∈ X}. For any element a ∈ C we set â = {X ∈ C↑ | a ∈ X}. It is easy to check
that â is an element of Ĉ. We further lift the propositional operators ⊗ ∈ {⊓,⊔,⇒, ∗} by:
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⊗(â1, . . . , ân) = (⊗̂(⃗an)).

Consider a function h where h(a) = â, for each a ∈ C. For each n ∈ ω and φ ∈ PF(S)
and f ∈ Dω, we define:

(∀n φ) f =
Ĉ∨
{â ∈ ran(h) | â ⊆

Ĉ∧
f ′∼n f

h(φ f ′)}

(∃n φ) f =
Ĉ∧
{â ∈ ran(h) |

Ĉ∨
f ′∼n f

h(φ f ′) ⊆ â}

The following lemma essentially says that, relative to the completion defined, the set
PF(S) (dependent only on S and not this particular completion) is closed under the quan-
tifiers.

Lemma 5.5. Suppose that S is an unreduced L-model structure and that we have comple-
tion Ĉ of C. Then the set PF(S) is closed under ∀k, ∃k for each k ∈ ω.

Proof. We show only the case for ∀k. Suppose that φ ∈ PF(S) and k ∈ ω. Then φ

corresponds to some Fn ∈ F; namely for any f ∈ Dω, φ f = Fn
i⃗

f = Fn( f (⃗in)) where

( f (⃗i)n) ∈ Dn. The reader is reminded that a variable assignment assigns to xk the object it
maps k to, as a variable assignment is a function from ω into D. Thus, we know which of
i⃗n are quantified over (in a semantic way) by the quantifier ∀k in ∀k φ.

Thus, consider the function
d
{Fn−m b/{jk1,...,jkm} : b ∈ D} ⃗i/k, where jk

1, . . . , jk
m is the set

of the positions of each occurrence of k in i⃗ and ⃗i/k is i⃗ with each of the m occurrences of
k removed. By (c3) and the definition of PF(S), we have that

d
{Fn−m b/{jk1,...,jkm} | b ∈

D} ⃗i/k ∈ PF(S). It remains to show (because h−1 is a function on the range of h) the
following identity for each f ∈ Dω:

h[
l

{Fn−m b/{jk1,...,jkm} : b ∈ D} ⃗i/k f ] =
Ĉ∨
{â ∈ ran(h) : â ⊆

Ĉ∧
f ′∼k f

h(φ f ′)}

We have the following sequence of equivalent elements:
l

{Fn b/{jk1,...,jkm} : b ∈ D}n−m
⃗i/k

f

=
l

{Fn b/{jk1,...,jkm} : b ∈ D}n−m
f

⃗i/k DF 5.2

=
l

{Fn b/{jk1,...,jkm} : b ∈ D}n−m( f (i1), . . . , f (in−m)) Notation

=
l

{Fn b/{jk1,...,jkm}( f b/k(i1), . . . , f b/k(in−m)) : b ∈ D} DF of n − m function

s = sb/k on each i

=
l

{Fn b/{jk1,...,jkm}(sb/k(i1), . . . , sb/k(in−m)) : b ∈ D} DF of n − m function

=
l

{Fn f b/k (⃗i) : b ∈ D} Notation

Thus, by conditions (p8).(a) on the content semantics and condition (5).(a) on h, and prop-
erties of the defined ∀n, we have the left-to-right (≤) direction of the target equality.
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For the other direction: we can apply (p8).(b). Each instance of ∀k φ is implies by ∀k φ.
By the properties of h, we have then that h−1(

∨Ĉ{â ∈ ran(h) | â ⊆ ∧Ĉ
f ′∼k f h(φ f ′)}) ≤ φ f ′,

for each f ′ ∼k f , and then applying (p8).(b) gives the desired inequation. □

We can now easily define the corresponding MG matrix for a structure of content se-
mantics.

Definition 5.6 (Corresponding MG Matrix). Let S = ⟨C, T, D, F,≤, ∗,⊓,⊔,⇒,
d

,
⊔⟩⟩ be

an unreduced L-model structure. The corresponding MG Matrix AS is defined by:

(1) AN = ⟨C, ∗,⊓,⊔,⇒, T⟩.
(2) AC is defined by:

(a) AC = Ĉ,
(b) the operations are ∗,⊓,⊔, and ⇒ lifted to Ĉ.
(c) the operations ∀n and ∃n are defined as above.

(3) D = D.
(4) PF = PF(S).
(5) h is defined by h(a) = â.

Lemma 5.7. A Corresponding MG Matrix is an MG Matrix.

Proof. Straightforwardly from the constraints on C, C is a set closed under ¬,∧,∨,→, (with
a distributive DeMorgan lattice reduct, from property (p4) on content semantics, and so
ordered by the usual definable ≤). Moreover, by condition (p6) the set T is an upset of
designated values.

The usual arguments show that Ĉ is a complete lattice ordered by ⊆. We trivially have
that D is non-empty.

Lemmas 5.3 and 5.5 demonstrated that PF is closed under the propositional connectives,
and that the required equalities hold. That is, conditions (1)–(5) of Def. 3.4 are satisfied.

Moreover, there are operators ∀n and ∃n in PF, for each n ∈ ω. It remains to be shown
that h is suitably defined. We have already seen that h(a) = â satisfies condition (5)(c)
of Def. 3.4. This leaves conditions (a) and (b), i.e. that a ≤N b ⇐⇒ â ≤C b̂ and that
T N = h−1T C. The former is immediate from the fact that â ⊓ b̂ = â ⊓ b, and that the lattice
order is defined in both algebras. For the latter, we fix DC = {â | a ∈ TN}. □

Lemma 5.8. For any BBQ m.s. S there is a corresponding evaluation J−KI : Fm −→ PF
such that for every interpretation I (on S) and variable assignment f I (where f I(xn) =
I(xn)) we have JAK f I = I(A).

Proof. Given that Brady’s interpretations bake in interpretations of the variables, each BBQ
m.s. interpretation will fix a particular variable assignment f I given the interpretation’s
valuation of the variables. That is,

f I(xk) =d f I(xk)

For a given interpretation I, we also define the corresponding multi-type function MI by
setting MI(Pn) =d f I(Pn), and by the usual definition of MI

f applied to a variable. (Re-
minder: there are no constants in Brady’s semantics.) From here, we construct the assign-
ment J−KI : Fm −→ PF according to definition 3.5.
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We proceed using a proof by induction on the complexity of A the claim that, for every in-
terpretation I, JAK f I = I(A). We show the cases for atomic formulas and universally quan-
tified formulas, leaving the straightforward propositional connective cases to the reader.

Case A = Pn(xi1 , . . . , xin): Note the following:

I(Pn(xi1 , . . . , xin)) = I(Pn)(I(xi1), . . . , I(xin))

= MI(Pn)( f I(xi1), . . . , f I(xin))

= JPn(xi1 , . . . , xin)K f I

This series of equations holds for each I, and therefore the base case is shown.
Case A = ∀xkB:

I(∀xkB) =
l

{Ib/xn(B) : b ∈ D} Definition

=
l

b∈D

Ib/xk (B) Notation

=
l

b∈D

JBK
f Ib/xk Induction Hypothesis

= ∀kJBK f I = J∀xkBK f I

The final step in this series of equalities needs some explanation. By the definition of ∀x, if∧
f ′∼n f φ f ′ is in C, then ∀n φ f =

∧
f ′∼n f φ f ′. Brady has shown that the required generalized

conjunction of instances in an element of C, and so the last equality above is justified, for
the set of variable assignments in the second last line are just the set of xk variants of f I . □

Thus we end the proof of the main theorem of this section. We in addition obtain the
following corollary.

Corollary 5.9. If A is not valid in the class of unreduced L-model structures, then A is not
valid in the class of MG Matrices

6. FROM THE MATRIX, CONTENT

Now for the other direction, we proceed from MG Matrices to unreduced L-model (“con-
tent”) structures. This section will consist of a proof of the following:

Theorem 6.1. For any MG Model M that is rich enough (defined below), there is an unre-
duced L-model structure SA such that, for every variable assignment f , there is an inter-
pretation I f on SA where JAK f ∈ D iff I f (A) ∈ T.

In the previous section, much of the work was showing how to simplify content struc-
tures into the more spare machinery required by MG matrices. In this section we must do
the opposite, namely, show that, if we start from MG matrices which are rich enough, then
we can represent all the various moving parts of content structures. The task then is to,
given a rich enough MG matrix A = ⟨AN, AC, D, PF, h⟩ define a corresponding content
structure:

SA =
〈
CA, TA, DA, FA,≤A, ∗A,⊓A,⊔A,⇒A,

dA,
⊔A

〉
(going forward, we’ll drop some of the superscripted A’s, where confusion due to ambigu-
ities are unlikely to arise).
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So we need to find, or build, appropriate objects for each of the content structure’s el-
ements. To start with, we can help ourselves simply to a set of contents CA = AN.15

Similarly obvious is the choice TA = DAN
. That is, we can just help ourselves to the

contents, as well as the true contents, by taking the elements of our nugget, and the des-
ignated elements of the nugget, respectively. It is quite natural to just help ourselves to
DA = D. Finally, to finish the easy bits, we can just help ourselves to the content rela-
tions/operations by taking over the operations on AN in the obvious way (i.e., fixing ⇒A

to be →N). Taking these definitions over makes it fairly clear that the desired propositional
structure is preserved, as the constraints on BB matrices can be seen to be equivalent to
the constraints (p1)–(p7) on content structures. Similarly, in both cases the interpretations
behave as homomorphisms from the language to the structure. So when considering just
the propositional structure of formulas, it is clear that the interpretations will behave the
same, and so it is easy to go from an MG matrix to a content structure.

As expected, the complexity comes in when we consider the behaviour of the quanti-
fiers, and particularly the use Brady makes of the “content functions” F, which are related
to, but not quite the same as, the propositional functions PF of MG matrices. The general
mismatch between the set F and the set of admissible propositions is what the represent.
A propositional function represents formulas, while a function in F represents formulas
without concrete occurrences of variables.

MG matrices are ‘general’ in the sense of having a distinguished set of admissible propo-
sitional functions PF, but these are functions which take simply a variable assignment to
return a proposition. That is, for φ ∈ PF, the only thing we need to know is how to
interpret the ‘free variables’ which ‘occur’ in φ in order to know what proposition it ex-
presses. In Brady’s structures, however, what F ∈ F takes as argument is an ordered set of
domain objects, and there is a great deal of machinery introduced in order to ensure that we
have enough such F’s to represent every formula we may want to interpret.16 In addition,
we construct interpretations of complex formulas by a somewhat complicated procedure
involving taking care of the elements of F interpreting the subformulas and the sets of
domain objects separately. All this introduces a great deal of ‘syntactic sugar’ into Brady’s
modeling. In this sense, the ‘general frame’ flavour of Brady’s structures is much stronger
than is the case in MG matrices. As a result, if we want to use MG matrices to represent
Brady structures, we need to consider a class of MG matrices with enough structure in
order to be able to represent all of this syntax in Brady’s semantics.

One interesting side effect of Brady’s building in the syntax into the semantics in this
way is that there can be curious mismatches between the richness of the language we want
to model, and the richness of the structures we have to do the modeling. Note, e.g., that
if our language has only a single unary predicate, Brady’s structures would nonetheless
have n-ary members of F for each n. For example, every finite conjunction of the function
representing that unary predicate. MG matrices don’t build in all this structure, and so in
order to construct an element of F using only propositional functions, we must be able to

15In general, we can ignore AC and h, except insofar as they give ∀n and ∃n the desired properties, as
given these assumptions we will see that AN is populated with enough meets and joins required for
a content structure.
16For example, consider an atomic formula P(x, y, z) with three free variables. In a sense, what rep-
resents this formula in the MG setting is a φP ∈ PF which represents “P(x, y, z)”, whereas what
represents P in a Brady structure is a FP ∈ F3, which needs to be embroiled in further machinery to
represent the role of the variables x, y, z.
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isolate n-ary (constructions of variable assignments and) propositional functions. Having
enough propositional functions around to do this is precisely what we’ll require of rich
enough MG matrices, and models built thereon.17

To consider rich enough models let us fix a language to interpret. This gives us, in the
MG Models, the function M which takes each n-ary predicate to an element of PF. (This
will be the exact function type for elements of F in the corresponding Brady structure.) By
using these functions, we obtain elements in F for each of the predicates. It is easy to see
that we can obtain functions for complex formulas, if we can reduce them to predicates.
We can do so under a fairly heavy assumption on our models/languages. We identity the
following classes of MG Models.

Definition 6.2 (Rich Enough MG Models). An MG model M (with language L) is rich
enough when for any formula A there exists a atomic formula PA whose arity is the sum of
constants and free variables in A such that JAKMf = JPA (⃗τ)KMf , where (⃗τ) is the constants
and free variables that occur in A in the order they occur from left to right. We will use this
notation for the corresponding predicate for a formula.

To take a concrete example, for the formula ∀xP(x, y, z)∧ R(c, x, z) would correspond to
a predicate Q of arity 5 such that

J∀xP(x, y, z) ∧ R(c, x, z)KMf = M(Q)( f (y), f (z), f (c), f (x), f (z)) (= JQ(y, z, c, x, z)KMf )

This correspondence enabled by the rich enough models will be key in constructing the
context structures below. Rich enough models require, by analogy, a rich enough language.

Definition 6.3. For any rich enough MG Model M = ⟨A, M⟩ with A = ⟨AN, AC, D, PF, h⟩,
define a set F(M) functions from D into AN (the carrier set of AN) as M restricted to inputs
of the form Dn.

It is clear, given the previous definition, that each element of F(M) is equivalent to the
interpretation of a predicate letter PA for some A. That is, each element of F(M) is of the
form M(PA).

Definition 6.4 (Corresponding BBQ m.s.). Let M = ⟨⟨AN, AC, D, PF, h⟩, M⟩ be a MG Ma-
trix. The corresponding Corresponding BBQ m.s. SM is defined as follows:
(1) C = AN.
(2) T = D.
(3) D = D.
(4) F = F(M).
(5) ≤=≤N; ∗ = ¬N,⊓ = ∧N;⊔ = ∨N;⇒=→N.
(6)

d
{M(PA) b/⟨⃗j⟩m (⃗an−m) | b ∈ D} = M(P∀xkA[xk/⟨j⟩m ])(⃗an−m)

(7)
⊔{M(PA) b/⟨⃗j⟩m (⃗an−m) | b ∈ D} = M(P∃xkA[xk/⟨j⟩m ])(⃗an−m)

The essential tension between Brady’s modeling of formulas-sine-variable-occurrences and
modeling formulas is highlighted in (6) and (7). In these, the occurrence of A on the left has
particular terms in a particular order, which may clash with arbitrary n-length sequences of
objects: e.g., take A = P(x, x) while the sequence given is (a, b). We thus ignore the actual

17Sufficiently rich MG matrices (minus models) ought to be capable of being transformed into Brady
structures, but we choose to transform models because (1) any model on any MG structure can be
transformed accordingly, and (2) MG models carry the syntactical information/corresopndence re-
quired to build a Brady Structure.
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variables in A on the left. On the right, however, we must take the variable occurrences
seriously. Thus, we write A[xk/⟨j⟩m] as the formula A but with the terms occurring in
the j-th places (left-to-right on free variables and constants) replaced with a variable k not
occurring on A (to avoid further clashes).18 Note also that in (6) and (7) we have defined
the

d
and

⊔
as of type V −→ C, as required.

Note that the following two lemmas require us to already have correlated ¬ with ∗, ⊓
with ∧ and so forth.

Lemma 6.5 (Closure under ∗,⊓,⊔,⇒). Let The set F(M) is closed under ∗,⊓,⊔,⇒: that
is, closure conditions (c1) and (c2) are met by the defined set of content functions.

Proof. We show the case for ∗ – the other cases are similar. We assume that any variable as-
signment is surjective unless otherwise noted, and so we will not include the hat notation.

Case ∗: Let M(PA) ∈ F(M). Consider the function M(P¬A) which is in F(M) by
definition. We have:

[M(PA)(a1, . . . an)]
∗ = [JPA(τa1 , . . . τan)K f ]

∗ for some f ∈ Dω

= [JAK f ]
∗ by definition

= ¬JAK f by ∗ = ¬N

= J¬AK f property of ¬
= JP¬A(τa1 , . . . τan)K f same τ⃗

= M(P¬A)(a1, . . . an) same τ⃗ and f

The step leading to the second line is justified by the defined correspondence between ¬
and ∗. In general, we have M(PA⊗B) = M(PA)⊗ M(PB). □

Lemma 6.6. The set F(M) satisfies condition (c3) in the definition of BBQ model structures,
namely: if M(PA) ∈ Fn and ⟨⃗j⟩m ⊆ {1, . . . , n}, then

d
{M(PA) b/⟨⃗j⟩m | b ∈ D} ∈ Fn−m and⊔{M(PA) b/⟨⃗j⟩m | b ∈ D} ∈ Fn−m.

Proof. By definition, we remind the reader, we have that
l

{M(PA) b/ ⟨⃗j⟩m | b ∈ D}(⃗an−m) =d f
l

{M(PA) b/ ⟨⃗j⟩m (⃗an−m) | b ∈ D}

for all a1, . . . , an−m ∈ D. The right-hand-side of the identity is defined to be M(PA)(⃗an−m),
which is an element of F(M) by the assumption of the model being rich enough. Moreover,
the function is of the correct arity: i.e., n − m. The case for

⊔
is similar. □

Lemma 6.7. For any rich enough MG model M, the corresponding content structure SM

is a BBQ structure.

Proof. It is clear from the definitions that SM is the right sort of thing to be a BBQ structure,
in the sense that all the defined elements are of the correct type (note that the V stated in
the typing of

d
,
⊔

is implicit, but available, given that we have all n-ary functions in the
rich enough model). So the remainder of the task concerns showing that the constraints on
BBQ structures are satisfied.

18To make reading (6) and (7) easier, the reader is reminded that Fnb/⟨⃗j⟩m (⃗an−m) = Fn[b/⟨⃗j⟩m (⃗an−m)].
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Next, it is required to show that all of the conditions (p1)–(p11) are satisfied. As men-
tioned before, the cases (p1)–(p7) are straightforward, and left to the reader. Here we con-
sider (p8), (p10), and (p11), as (p9) is very similar to (p8).

Towards (p8).(a), let us unpack the definition of
d

:
l

{M(PA) f b/k (⃗in) | b ∈ D} =
l

{M(PA)( f b/k (⃗i1), . . . , f b/k (⃗in)) | b ∈ D}(1)

=
l

{M(PA)b/ ⟨⃗j⟩m (⃗an−m) | b ∈ D}(2)

= M(P∀k )(⃗an−m)(3)

= J∀kAKMf(4)

≤ JAKMf(5)

where in line (2) and beyond, ⟨⃗j⟩m is the indexes of occurrences of k in (⃗in) and the (⃗an−m)
are the remaining ( f b/k(i1), . . . , f b/k(in)). Equalities (1) and (2) are just changing the de-
scription of a single sequence of objects. (3) is the defining equality of the

d
. (4) follows

from (3), and keeps the original f from above. (Although it could be changed for any f
agreeing on all the terms in A, the proof follows nicely using the same variable assign-
ment.) (5) is a fact on MG models.

Two more equalities matter for this case:

JAKMf = M(PA)( f b/k (⃗i1), . . . , f b/k (⃗in))(6)

= M(PA) f b/k (⃗in)(7)

(6) follows by the definition of rich enough models (with the terms being obtained from
previous lines). (7) is a redescription of a sequence of objects.

For (p8).(b), suppose that M(PA) f (⃗in) is k-constant and that M(PA) f (⃗in) ≤ M(PB) f b/k (⃗jm)
for each b ∈ D. Then:

M(PA) f (⃗in) ≤ M(PB) f b/k (⃗jm)(8)

M(PA) f (⃗i1), . . . , f (⃗in)) ≤ M(PB) f b/k (⃗j1), . . . , f b/k (⃗jm))(9)

JAK f ≤ JBK f b/k each b ∈ D(10)

JAK f ≤ J∀kBK f(11)

M(PA) f (⃗in) ≤
l

{M(PB) f b/k (⃗jm) | b ∈ D}(12)

The step from line (10) to (11) is justified by the fact that if JAK f ≤ J∀kBK f b/k holds for each

b ∈ D, then we have that JAK f ≤
∧C

f ′∼k f JBK, from which it follows by the definition of MG
matrix that (4) holds.

The proofs for (a) and (b) of (p9) are similar, straightforward, and left to the reader.
As for (p10), assume that M(PA) is an n-ary function and M(PB) an m-ary function,

and let M(PA) f b/k (⃗in) be k-constant. By Lemma 6.5, we have that M(PA) ⊔ M(PB) =
M(PA∨B), and so then

l
{(M(PA) ⊔ (M(PB)) f b/k (⃗in, j⃗m) | b ∈ D} =

l
{M(PA∨B) f b/k (⃗in, j⃗m) | b ∈ D}

= M(P∀k((A∨B)[xk/⟨j⟩q ]))(⃗an+m−q)

Given the k-constancy assumption, k does not occur in i⃗n, and so each replacement of xk in
((A∨ B)[xk/⟨j⟩q]) occurs in B.
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Now by the assumption the model is rich enough

M(P∀k((A∨B)[xk/⟨j⟩q ]))(⃗an+m−q) = J∀k((A∨ B)[xk/⟨j⟩q])K f b/k

≤ J(A∨ ∀kB[xk/⟨j⟩q])K f b/k

With this inequality in mind, we can obtain the desired inequality by unpacking the right-
hand side further, as follows:

J(A∨ ∀kB[xk/⟨j⟩q])K f b/k = M(P(A∨∀kB)[xk/⟨j⟩q ]) (⃗an+m−q)

= (M(PA) ⊔ M(P∀kB)[xk/⟨j⟩q ])(⃗an+m−q)

= M(PA) f b/k (⃗in) ⊔
l

{M(PB) f b/k (⃗jm) | b ∈ D}

The last equality packs in several steps, which we leave to the reader to confirm. The result
is, as desired, that:

M(P∀k((A∨B)[xk/⟨j⟩q ]))(⃗an+m−q) ≤ M(PA) f b/k (⃗in) ⊔
l

{M(PB) f b/k (⃗jm) | b ∈ D}

As for (p11), assume that M(PA) f b/k (⃗in) ∈ T for all b ∈ D. Then JAKb/k
f ∈ D for

all b ∈ D. By condition (5).(d) of definition 3.4, it follows that J∀xkAK f ∈ D. But then,
because h is a matrix homomorphism, translating back to the content structure we have
that

d
{M(PA) f b/k (⃗in) | b ∈ D} ∈ T, as required. □

Lemma 6.8. For any rich enough MG model M with interpretation J·K (based on M) and
variable assignment f ∈ Dω on an MG matrix A, we can find an interpretation I f on SA

such that for any formula A:

JAK f = I f (A)

Proof. Given the variable assignment f we begin the construction of the corresponding I f

as follows:

(1) I f (c) = M(c)
(2) I f (xn) = M f (xn)

(3) I f (Pn) = M(Pn)
(4) This is extended to formulas by definition 4.3.

Note that the corresponding interpretations are largely restricted by M and not the variable
assignment. Using this interpretation we show the target by induction on the complexity
of a formula.

If A is atomic, then A = Pn(τ1, . . . τn). Consider the following:

I f (Pn(τ1, . . . τn)) = I f (Pn)(I f (τ1), . . . I f (τn))

= M f (Pn)(M f (τ1), . . . M f (τn))

= JPn(τ1, . . . τn)Km
f

We leave the straightforward propositional connectives to the reader. The only case we
show is A = ∀xkB. We first note the equivalence between I f b/k

and (I f )b/k. We leave the
proof of this equivalence to the reader, with the observation that the treatment of terms and
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predicate letters is the same. Using this equivalence obtain the first step in the following:

I f (∀xkB) =
l

{I f b/k
(B) | b ∈ D}(13)

=
l

{JBK f b/k | b ∈ D}(14)

=
l

{M(PB) f b/k (⃗τn) | b ∈ D}(15)

= M(P∀xkB[xk/⟨j⟩m ])(⃗an−m)(16)

= J∀xkBK f(17)

The step (14) is justified by the induction hypothesis. Line (15) is justified by the MG model
being rich enough, where the terms in (⃗τn) are the free variables and constants occurring
in B. In (16), the list (⃗an−m) is the objects f b/k (⃗τn) minus the occurrences of xk. The last
step is again by the model being rich enough. □

We can combine these lemmas to obtain a proof of the following corollary, from which
the corollary follows.

Corollary 6.9. If A is not valid in the class of MG matrices, then it is not valid in the class
of BBQ structures.

Proof. This is a clear corollary of the previous lemma, provided it is shown that for every A
not valid in the class of MG matrices, there is a rich enough MG model on which A is invalid.

Take a model M0 in which a formula A is invalid. Take an enumeration of the formu-
las in the language L0 of M0. For each formula B ∈ L0, if there is a predicate equiv-
alent, continue. If there is not, then add a new predicate PB creating language L1 =
L0 ∪ {PB}. Moreover, set the new interpretation M1 such that it remains as M0 except
that JBK f = M(PB) ( f (τ1), . . . , f (τn)), where the τ are the (left-to-right) occurrences of free
variables and constants in B, as in the definition of rich enough models. This ensures that
JPB(τ1, . . . τn) ↔ BK f is always designated.

It is more or less immediate that if C in L0, it is designated in M1 iff it is designated in
M0.

We repeat this step to obtain each Mp, in Lp for each p ∈ ω, and take the union of each
language to be L0

ω. For each step, we obtain the new model that conservatively extends
validity in L0. We repeat this process ω-many times, increasing the superscript, and take
the union of these languages as Lω

ω. Similarly, we obtain Mω
ω. This last model is rich

enough, as can be shown by fairly routine arguments. □

7. CONCLUSION

In this paper, we’ve compared Brady’s content structures (for BBQ) with MG matrices
appropriate for BBQ. We’ve shown how to transform any of the former into one of the
latter, and have pinned down a subset of the latter (the rich enough MG matrices) which can
be transformed into the former. This serves to indicate the distinctive features of Brady’s
content semantics for quantified logics, by comparing them with the more recent, and in
many ways simpler, semantics devised by Mares and Goldblatt (or a matricial variation
thereon). Along the way, we’ve seen how much syntactic flavour Brady’s content semantics
has, and how this seems to necessitate starting from MG matrices which are rich enough to
represent not only truth conditions for a language, but particular syntactic features of the
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language itself, in order to build content structures out of them. This highlights the way in
which Brady’s semantics works by straddling the syntax/semantics boundary.19

What we’ve shown falls short of a full duality, for which we’d need to show that com-
posing these transformations defines the appropriate identities in the respective sets of
structures. Furthermore, we’ve focused our attention just on BBQ, and have not addressed
extensions/expansions of this logic beyond the usual connectives. We invite the interested
reader to investigate these avenues, as well as potential connections to other semantics
for quantified relevant logics. We hope that these initial results will be valuable for such
avenues of investigation, but leave our work here for now.
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