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CONTENT AND DEPTH REVISITED

SHAY ALLEN LOGAN

Abstract. In this paper I compare depth relevance to what has come to
be called depth hyperformalism. Ordinary formality, is typically taken
to require closure under uniform substitutions. Depth hyperformality
requires closure under depth substitutions—not-necessarily-uniform sub-
stitutions that are allowed to vary with depth. As it turns out, all depth
hyperformal logics are depth relevant but not vice-versa.

So we’re left to ask the following question: for the particular projects
Ross Brady is engaged in, should it be depth relevance or depth hyperfor-
malism that should set the pace? More to the point, I am interested in the
following two claims:
• Logics of meaning containment are necessarily depth hyperformal.
• Logics of meaning containment are necessarily depth relevant.

The first entails the second. Brady seems to endorse the second. I argue
in this paper that he should also endorse the first.

Introduction

Relevant logics, as shown already in 1959 by Belnap, have the variable-
sharing feature: their provable conditionals always share an atom between
antecedent and consequent. In 1984, Ross Brady proved that for weak-
enough relevant logics, we can say something stronger: the atom being
shared will occur at the same depth—which is to say, in the scope of the
same number of conditionals.

In this paper I will compare depth relevance to what has come to be called
depth hyperformalism. In contrast to ordinary formality, which is typically
taken to require closure under uniform substitutions, depth hyperformality
requires closure under depth substitutions—not-necessarily-uniform sub-
stitutions that are allowed to vary with depth. As it turns out, all depth
hyperformal logics are depth relevant but not vice-versa.1

So we’re left to ask the following question: for the particular projects Ross
Brady is engaged in, should it be depth relevance or depth hyperformalism
that should set the pace? More to the point, I’ll be interested in the following
two claims:

1In the most recent work coming out of this line of research, different flavors of hyper-
formalism have been distinguished, hence the appending of ‘depth ’ to ‘hyperformalism’
here.
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• Logics of meaning containment are necessarily depth hyperformal.
• Logics of meaning containment are necessarily depth relevant.

The first entails the second. Brady seems to endorse the second. I’ll argue
in this paper that for the sorts of projects he’s working on, he should also
endorse the first.

The question is, in a perfectly innocuous sense, purely academic. After all,
the logic (DJ) that Brady advocates for in his best-known work on meaning
containment (see [2]) is in fact depth hyperformal, as we’ll see below. In
spite of this, the general point I’m making is worth bearing in mind. Folks
engaged in the kinds of projects Brady is engaged in ought not take their
having arrived at a depth relevant logic as evidence of having arrived at a
good-enough logic. What’s instead required is that they arrive at a depth
hyperformal logic.

1. Setup

We define our language, L, as follows:
Vocabulary:
• Atomic formulas: p1, p2, etc. We write At for the set of these.
• Connectives: ¬, ∧, ∨, and→

Grammar:
• Each atomic variable v is a(n atomic) formula.
• If A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B), and

(A→ B).
The metavariable conventions implicitly established in the above definition
will be used throughout the paper. Outermost parentheses are dropped as
per the usual conventions. For A ∈ L, we write At(A) for the set of atomic
formulas that occur in A. Given a set S ⊆ At, L(S ) = {A : At(A) ⊆ S }.

Given a formula A and a specified occurrence of B as a subformula of A,
we define the depth of that occurrence of B in A recursively as follows:

• The depth of the unique occurrence of A in A is 0.
• If the depth of a given occurrence of B in A is n, then the depth of

the corresponding occurrence of B in ¬A, in A ∧ A′, in A′ ∧ A, in
A ∨ A′, and in A′ ∨ A is also n.
• If the depth of a given occurrence of B in A is n, then the depth of the

corresponding occurrence of B in A→ A′ and in A′ → A is n + 1.
A uniform substitution is a function σ : At→ L. Given such a function

we extend it to a function σ+ : L → L by the following clauses:
• σ(¬A) = ¬σ(A).
• σ(A ∧ B) = σ(A) ∧ σ(B).
• σ(A ∨ B) = σ(A) ∨ σ(B).
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• σ(A→ B) = σ(A)→ σ(B).
We will almost always conflate σ+ and σ and call both of them ‘σ’, since
not confusion will arise by doing so.

Given a set of sentences X, we say that X is formal when for all uniform
substitutions σ, if A ∈ X, then σ(A) ∈ X as well. Thus ‘formalism’ (as we
will use the word here) simply amounts to closure under uniform substitution.

Write N for the set of natural numbers. A depth substitution is a function
δ : (At × N) → L. Given such a function we extend it to a function—also
called δ—(L × N)→ L by the following clauses:

• δ(¬A, n) = ¬δ(A, n).
• δ(A ∧ B, n) = δ(A, n) ∧ δ(B, n).
• δ(A ∨ B, n) = δ(A, n) ∨ δ(B, n).
• δ(A→ B, n) = δ(A, n + 1)→ δ(B, n + 1).

Given a set of sentences X, we say that X is depth hyperformal when for
all depth substitutions δ and numbers n, if A ∈ X, then δ(A, n) ∈ X as
well. Thus just as formalism is closure under uniform substitution, depth
hyperformalism is closure under depth substitutions.

Ross Brady pioneered the study of depth in relevance logics in [3]. The
idea to use nonuniform (and in particular depth-varying) substitutions to
study depth relevance was first raised in [6]. What I think is now becoming
clear, and what I will in part be arguing for below, is that depth relevance is,
to some extent, a sideshow. What’s driving all the action in this area is really
the closure under depth substitutions bit.

1.1. Some Examples. An extremely useful example of a depth substitution
is the function g defined by (pi, n) 7→ p2i3n . To get a feel for depth substi-
tutions, think about how g acts on a few well-known theorems of classical
logic:

Example 1:

g(p1 → (p2 → p1), 0) = g(p1, 1)→ g(p2 → p1, 1)
= p6 → (g(p2, 2)→ g(p1, 2))
= p6 → (p36 → p18)

Example 2:

g(((p1 ∧ (p1 → p2))→ p2, 0)) = g(p1 ∧ (p1 → p2), 1)→ g(p2, 1)
= (g(p1, 1) ∧ g(p1 → p2, 1))→ p12

= (p6 ∧ (g(p1, 2)→ g(p2, 2)))→ p12

= (p6 ∧ (p18 → p36))→ p12
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Example 3:

g(p1 → (p1 ∨ p2), 0) = g(p1, 1)→ g(p1 ∨ p2, 1)
= p6 → (g(p1, 1) ∨ g(p2, 1))
= p6 → (p6 ∨ p12)

Example 4:

g(((p1 → p2) ∧ (p2 → p3))→ (p1 → p3), 0) =
g(((p1 → p2) ∧ (p2 → p3)), 1)→ g(p1 → p3, 1) =
(g(p1 → p2, 1) ∧ g(p2 → p3, 1))→ (g(p1, 2)→ g(p3, 2)) =
((g(p1, 2)→ g(p2, 2)) ∧ (g(p2, 2)→ g(p3, 2)))→ (p18 → p72) =
((p18 → p36) ∧ (p36 → p72))→ (p18 → p72)

Note that in Example 1 and Example 2, g transforms the given theorem of
classical logic into an obvious non-theorem. On the other in Example 3 and
Example 4 g instead transforms it into a theorem with the same logical form
as the theorem we started with. Note also that this tracks the containment
relation between DJ and classical logic: the formulas in Example 1 and
Example 2 are not theorems of DJ; the formulas in Example 3 and Example
4 are. It follows from our discussion that, while the set of theorems of
classical logic is, of course, it is not depth hyperformal. We will see below
that DJ, on the other hand, is depth hyperformal.

The function g has a natural ‘inverse’, ĝ defined by ĝ(p2i3n) = pi. Note
that this is a uniform substitution. The sense in which ĝ is an inverse to g is
given by the following lemma:

Lemma 1. For all n, ĝ(g(A, n)) = A

Proof. By induction on A. □

The following lemma will also improve the readability of a few of the
results below:

Lemma 2. Given an atomic formula p, a number n, and a formula A, all
occurrences of p in g(A, n) are at the same depth.

Proof. Suppose p occurs in g(A, n). Then p is in the range of g(−, n) so has
the form p2i3 j+n . But this is possible only if it occurred at depth j in A. □

Our final observation is that formulas (like the ones examined in Example
1 and Example 2) that behave badly around depth substitutions tend to in fact
behave so badly that they can’t be included in anything even remotely like a
logic. To see this in the case of Example 1, choose an arbitrary formula B,
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set of formulas X, and A ∈ X. Let dB be a depth substitution for which the
following hold:

d(p1, 1) = A
d(p2, 2) = A
d(p1, 2) = B

Applying any such dA to p1 → (p2 → p1), the result is A → (A → B).
Thus, if X is depth hyperformal, closed under modus ponens, and contains
p1 → (p2 → p1) then X must also contain B. But B was chosen arbitrarily,
so it in fact follows that every nonempty depth hyperformal set closed under
modus ponens is either trivial or fails to contain p1 → (p2 → p1).

A similar trick works in the case of Example 2, though here we need to
also assume the logic is closed under adjunction. In both cases, the moral is
the same: no set of formulas can contain formulas like the ones in Example
1 and Example 2 while being both depth hyperformal and even remotely
logic-like.2

2. Depth Friendliness

In this section we will describe a general procedure for showing that a
given logic is depth hyperformal. The procedure is strictly more general
than what is needed for the task at hand. All we really need to see is that
DJ is depth hyperformal. Nonetheless, I think that since the effort it takes
to gain the additional generality is quite minimal, and since the additional
generality de-mystifies some parts of the proof that DJ is depth hyperformal,
it’s worthwhile to see the more general result.

We begin with a few definitions. An axiom scheme will be said to be
depth friendly when the set of its instances is depth hyperformal. That is,
an axiom scheme S is depth friendly when, given any instance A of S , any
depth substitution d and any number n, d(A, n) is again an instance of S .
In a similar way, we say that the rule R is depth friendly when, given any
instance A1, . . . , An ⇒ B of R, any depth substitution d, and any number
k, there are depth substitutions d1, . . . , dn and numbers k1, . . . kn so that
d1(A1, k1), . . . , dn(An, kn)⇒ d(B, k) is again an instance of R. We say that a
set of sentences X is depth friendly when X can be axiomatized by a set of
depth friendly axiom schemes and a set of depth friendly rules.

Theorem 3. If X is depth friendly, then X is depth hyperformal.
2As is always the case with claims of this strength, there really ought to be caveats. One

interesting class of caveats concerns empty logics of the sort examined in e.g. [5] or [9]. In
[redacted] it is shown that depth substitutions in fact act on proofs. It thus seems likely that
considerations like those above extended even to theoremless (or otherwise ‘empty’) logics,
but I haven’t taken the time to see whether this is correct.
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Proof. By induction on derivations in X’s depth friendly axiomatization.3 To
begin, choose a depth substitution d and a number n. A derivation of length
one is just an instance, A of one of our axiom schemes S . By assumption,
the axiom schemes are depth friendly. So d(A, n) is again an instance of S .
So it is also a derivation of itself and thus in X.

Now suppose we’ve ended our derivation by applying the following in-
stance of the rule R:

A1, . . . , An ⇒ B.
We want to show that d(B, n) is in X. By assumption, corresponding to d
and n are depth substitutions d1, . . . , dn and numbers k1, . . . kn so that the
following is again an instance of R:

d1(A1, k1), . . . , dn(An, kn)⇒ d(B, n).

By the inductive hypothesis d1(A1, k1), . . . , and dn(An, kn) are in X. Thus
d(B, n) is in X too. □

Fitting your definitions to your theorem is a practice which, when done
in moderation, can be tolerable. What we have here is something slightly
worse: the definitions have been fit not only to the theorem, but to its proof.

Such behavior is usually unforgivable. In this case, surprisingly, it bears
fruit.4 To see this, we first need to see that depth substitutions can be ‘shifted’
in ways that will turn out to be helpful. The following lemma explains what
this means:

Lemma 4. Let δ be a depth substitution and define δ′ as follows:

δ′(p, n) =
{
δ(p, n − 1) if n > 0
δ(p, 0) otherwise

Then for all A and all n > 0, δ′(A, n) = δ(A, n − 1).

Proof. By induction on A. The definition gives us what we need for atoms
and the inductive hypothesis immediately finishes the job for negations,
conjunctions, and disjunctions. For conditionals, let n > 0 and note that
δ′(A→ B, n) = δ′(A, n + 1)→ δ′(B, n + 1). By the inductive hypothesis, this
is δ(A, n)→ δ(B, n) = δ(A→ B, n − 1). □

In [2] Brady argues that (at the propositional level) the logic of meaning
containment is the logic DJ.5 DJ, in turn, is defined to be the smallest set

3The concept of depth friendliness was essentially cooked up to make this proof work,
so it’s no surprise that it does. Nonetheless, it’s worth seeing it in action.

4Worth remark: one lesson of the parable of the garden is that not all things that bear
fruit are forgivable.

5He actually argues that it’s DJd, but then shows, in Corollary 2d to Theorem 4.13 that
DJ and DJd are, qua sets of sentences, identical. They may (I’m genuinely uncertain) come
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that (a) contains all uniform substitutions of the following formulas which is
also (b) closed under all uniform substitutions of the following rules:

Axioms:
A1. p1 → p1

A2. (p1 ∧ p2)→ p1

A3. (p1 ∧ p2)→ p2

A4. ((p1 → p2) ∧ (p1 → p3))→ (p1 → (p2 ∧ p3))
A5. p1 → (p1 ∨ p2)
A6. p2 → (p1 ∨ p2)
A7. ((p1 → p3) ∧ (p2 → p3))→ ((p1 ∨ p2)→ p3)
A8. (p1 ∧ (p2 ∨ p3))→ ((p1 ∧ p2) ∨ (p1 ∧ p3))
A9. ¬¬p1 → p1

A10. (p1 → ¬p2)→ (p2 → ¬p1)
A11. ((p1 → p2) ∧ (p2 → p3))→ (p1 → p3)

Rules:
R1. p1 p1 → p2

p2

R2. p1 p2
p1 ∧ p2

R3.
p1 → p2 p3 → p4

(p2 → p3)→ (p1 → p4)

Lemma 5. DJ is depth friendly.

Proof. Each of the axiom schemes is clearly depth friendly. R2 is clearly
depth friendly as well. So it comes down to R1 and R3.

R3 is easier: choose d and n and note that the following is an instance of
R3:

d(p1 → p2, n + 1) d(p3 → p4, n + 1)
d((p2 → p3)→ (p1 → p4), n)

For R1, the only source of difficulty is that we need to use the depth substi-
tution d′ defined in Lemma 4. Using this, we see that the following is an
instance of R1:

d(p1, n) d′(p1 → p2, n)
d(p2, n)

□

apart if considered in other ways (e.g. if one were to somehow present them via something
like the bunched proof systems given in [10]), but that’s neither here nor there for the
purposes of the present paper. Restricting our attention to DJ rather than DJd will let us
ignore the somewhat fussy matter of disjunctive metarules. A referee has helpfully pointed
out that we should be clear here: I am restricting my attention to logics-qua-set-of-theorems
rather than logics-thought-of-some-other-way largely because it’s what Brady does, and not
because of anything particularly deep.
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Corollary 6. DJ is depth hyperformal.

Proof. Immediate from the previous lemma and Lemma 3. □

Corollary 7. A ∈ DJ iff g(A, 0) ∈ DJ.

Proof. The ‘only if’ direction is immediate from the previous corollary. For
the ‘if’ direction, recall from Lemma 1 that A = ĝ(g(A, 0)). Thus, since ĝ is
a uniform substitution, it follows even without the previous corollary that if
g(A, 0) ∈ DJ, then A ∈ DJ. □

We also have the following as a corollary of the well-known main result
in [1]:

Theorem 8. If A→ B is in DJ then there is an atom pi so that pi occurs in
A and pi occurs in B.

We can then prove depth relevance for DJ by a surprisingly quick argu-
ment:

Theorem 9. If A → B is in DJ, then there is an atom pi and an n ∈ N so
that pi occurs at depth n in A and pi occurs at depth n in B.

Proof. By Theorem 6, g(A → B, 0) = g(A, 1) → g(B, 1) ∈ DJ. Thus by
Theorem 8, g(A, 1) and g(B, 1) share an atom. Since it occurs in the range
of g there are i ≥ 1 and n so that the shared atom is p2i3n . But also by
construction, since p2i3n occurs in g(A, 1), pi must occur at depth n − 1 in A.
Similarly since p2i3n occurs in g(B, 1), pi must occur at depth n − 1 in B. So
pi occurs at the same depth in both A and B as required. □

The chain of inferences we have, then, is something like this:
depth friendly⇒ depth hyperformal⇒ depth relevant (if relevant)

The converse of the second of these inferences is false; as mentioned in [7],
this was noticed by Tore Fjeltland Øgaard. The converse to the first is, of
course, true: one can simply take the class of all formulas as one’s axioms.

3. Meaning Containment and Its Logic

It follows from Theorems 6 and 9 that the logic that is (at least one time-
slice of-) Brady’s preferred logic for a theory of meaning containment is in
fact both depth hyperformal and depth relevant. But as pointed out above,
knowing which of these two properties is the proper target of his inquiry is
nonetheless important. After all, it is not as if Brady has finished plumbing
the depths of his topic; further investigation of what meaning containment
demands of us may well be afoot even now. Such investigations are served
by having well-enunciated necessary syntactic criteria in play to (partially)
judge their success by. The claim I’m making (and, in this section, defending)
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is that depth hyperformalism is a better syntactic criterion to use to this end
than depth relevance is.

The argument I will present below can be summarized as follows:
• Nothing in Brady’s meaning-containment semantics hinges on our

assigning the same content to instances of a formula that occur at
different depths.
• A depth varying version of Brady’s content semantics, while formally

more awkward, can help us make better sense of what Brady has to
say about why his logic should be expected to be depth relevant.
• But it is depth hyperformalism and not depth relevance that is the

obvious syntactic analogue to the depth varying assignments at the
heart of the depth varying version of content semantics.

We begin with a brief overview of content semantics is it appears in [2].
But, in hopes of preventing typographical errors, we will dispense with one
of Brady’s conventions: rather than naming everything in sight with some
variant or other of the letter ‘c’, we’ll avail ourselves of a bit more of the
alphabet. The result (while not different in any non-typographical way from
what Brady does) is, I think, much easier on the eyes.

With that said, here are the details:
A content model structure is a 5-tuple ⟨K,T, ∗,⊔, c⟩ where K is a set of

sets closed under intersection (with each member of K being a ‘kontent’),
T ⊆ K is the set of true kontents, ⋆ is a unary function on kontents, and both
⊔ and c are functions K × K → K.6

The intuition to have is that each ‘kontent’ is a possible content some
sentence might have; T picks out those kontents that are the kontents of
true sentences; and ⊔ is the closed union of kontents. The so-called Routley
star ‘∗’ is a tool used for dealing with negation. It’s gone in for a lot of
discussion over the years. We won’t bother to say another word about it,
though, because it simply plays no role at all in the arguments below. Finally,
the binary function c is the function that assigns to a pair of kontents k1 and
k2 the kontent that represents the content of the claim ‘k1 is contained in k2’.

We require that these satisfy the following postulates:
p1. k1 ⊔ k2 ⊇ k1; k1 ⊔ k2 ⊇ k2.
p2. If k1 ⊇ k2 and k1 ⊇ k3, then k1 ⊇ k2 ⊔ k3.

6I haven’t been able to locate anywhere in Brady’s corpus where the restriction to sets
of kontents that are closed under intersection is made explicit. But it’s clearly necessary
else the clause for disjunctions in the semantics doesn’t make sense. Brady also says that
the function I’m here calling c is defined ‘on containment sentences’ or sometimes ‘on
containments’. Both of these strike me as odd, for a variety of reasons, but the main one is
that neither way of understanding what c is would leave it an actual, genuine binary function
from contents to contents, which is what its role in the semantic theory requires it be.
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p3. k∗∗ = k.
p4. If k1 ⊇ k2, then k∗2 ⊇ k∗1.
p5. If k1 ⊇ k2 and k1 ∈ T , then k2 ∈ T .
p6. If k1 ∈ T and k2 ∈ T , then k1 ⊔ k2 ∈ T .
p7. If k1 ∩ k2 ∈ T , then k1 ∈ T or k2 ∈ T .
p8. c(k1, k2) ⊔ c(k2, k3) ⊆ c(k1, k3).
p9. c(k1, k2) ⊔ c(k1, k3) ⊆ c(k1, k2 ⊔ k3).

p10. c(k1, k3) ⊔ c(k2, k3) ⊆ c(k1 ∩ k2, k3).
p11. c(k1, k2) ⊇ c(k∗2, k

∗
1).

p12. c(k1, k2) ∈ T iff k1 ⊇ k2

p13. If k1 ⊇ k2, then for all k3 ∈ K, c(k3, k1) ⊇ c(k3, k2) and c(k2, k3) ⊇
c(k1, k3).

An interpretation then assigns a member I(p) of K to each atom p and is
extended to arbitrary sentences via the following clauses:

• I(¬A) = I(A)∗.
• I(A ∧ B) = I(A) ⊔ I(B).
• I(A ∨ B) = I(A) ∩ I(B).
• I(A→ B) = c(I(A), I(B)).

To round things out, we say that a formula A is valid—and we write ⊨ A—
just if I(A) ∈ TM in all content model structures M and for all interpretations
I.

Theorem 10. The set of valid formulas is exactly the set of sentences in DJ.

Proof. See [2]. □

As defined here, each atomic formula is assigned a kontent, which it
retains throughout the evaluation of a formula. But I said above that nothing
in the semantics depended on this. To see this, we present an alternative
version of Brady’s semantics that differs in only three ways:

• First, rather than using a single interpretation I we will instead rely
on what I call varying interpretations, which are infinite families of
interpretations {I j}

∞
j=0.

• Second, the semantic clause for the conditional is changed slightly:
I j(A→ B) = c(I j+1(A), I j+1(B))

• Finally, we say that a formula is valid on varying assingments—and
we write ⊨v A—just if I0(A) ∈ TM for all content model structures M
and for all varying interpretations {I j}

∞
j=0.

Theorem 11. ⊨ A iff ⊨v g(A, 0)

Proof. Note that by Corollary 7 and Theorem 10, ⊨ A iff ⊨ g(A, 0). So
it suffices to see that ⊨v g(A, 0) iff ⊨ g(A, 0). To that end, for each p ∈
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At(g(A, 0)), let dp be the (unique!) depth at which p occurs in g(A, 0). Given
a content model structure M and a varying assignment {I j}

∞
j=0, let I be the

assignment defined by I(p) = Idp(p). I claim that if B occurs at depth n
in g(A, 0), then I(B) = In(B). To see that this will suffice, note that since
g(A, 0) occurs at depth 0 in g(A, 0), I(A) = I0(g(A, 0)), and thus A is valid on
constant assignments iff g(A, 0) is valid on varying assignments.

We prove the claim by induction on the complexity of B. If B = p is an
atom, then it occurs in g(A, 0) at depth dp, and by definition I(p) = Idp(p).

Suppose B = B1 ∧ B2 occurs at depth n in g(A, 0). By the inductive
hypothesis, I(B1) = In(B1) and I(B2) = In(B2). So I(B) = I(B1) ⊔ I(B2) =
In(B1) ⊔ In(B2) = In(B). Similar arguments suffices for the negation and
disjunction cases.

Suppose B = B1 → B2 occurs at depth n in g(A, 0). By the inductive hy-
pothesis, I(B1) = In+1(B1) and I(B2) = In+1(B2). So I(B) = c(I(B1), I(B2)) =
c(In+1(B1), In+1(B2)) = In(B). □

Theorem 12. Let M be a content model structure, {I j}
∞
j=0 be a varying inter-

pretation, and d be a depth substitution. Define the varying interpretation
{I′j}

∞
j=0 by I′j(p) = I j(d(p, j)). Then in fact I′j(A) = I j(d(A, j)) for all formulas

A.

Proof. By induction on A. The only interesting case is the conditional case,
for which we reason as follows:

I′j(A→ B) = c(I′j+1(A), I′j+1(B))
= c(I j+1(d(A, j + 1)), I j+1(d(B, j + 1)))
= I j(d(A, j + 1)→ d(B, j + 1))
= I j(d(A→ B, j))

□

Corollary 13. If ⊨v A, then for all depth substitutions d, ⊨v d(A, 0).

Proof. Let ⊨v A. Choose content model structure M and varying interpreta-
tion {I j}

∞
j=0. Let I′ be as in the previous theorem. Then I0(d(A, 0)) = I(A, 0) ∈

TM because ⊨v A. So ⊨v d(A, 0). □

Corollary 14. ⊨v g(A, 0) iff ⊨v A.

Proof. The ‘if’ direction is immediate from the preceding corollary. For the
‘only if’ direction, let d(p, n) = ĝ(p) for all n and use the previous corollary
again. □

Corollary 15. ⊨ A iff ⊨v A.

Proof. Immediate from Theorem 11 and the preceding corollary. □
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4. Depth Hyperformalism vs. Depth Relevance

Let’s summarize what we’ve seen so far. In Corollary 6, we saw that DJ
was depth hyperformal. Corollary 15 gave a sort of semantic analogue of
this: content model structures can assign contents piecemeal, depth by-depth,
without in any way changing the set of valid formulas. I think that Brady
had an inkling of something at least quite like this result in mind. I think this
for two reasons: first, something very like it is afoot in his [3], so it would
be quite surprising if nothing in this neighborhood was on his mind at all
by the time he got around to writing [2]. Second, something quite like the
piecemeal approach seems to be at least in the air in the following passages:

Depth relevance is an appropriate condition for a logic to
satisfy since its relevance would then be ensured through a
sentential variable that occurs at the same level on both sides
of the main entailment ‘→’ thus enabling these sentential
variables to interact with one another.[2, p. 164]

a necessary condition for a subformula B to interact with an-
other subformula B is for them to be on the same level, where
level is counted down by ‘→’s from the whole formula. For
otherwise, the class of contents or containment statements
involving the two B’s will not match up. Such a concept of
level can be elucidated as that of the depth of a subformula
occurrence of B in a formula A[.][2, p. 162]

The idea seems to be this: when considering two occurrences of the same
formula as a subformula of a given formula, if they occur at different depths,
then they will be involved in different numbers of content containment
statements. And this, in turn, means they can’t ‘interact’.

This is helpful, if a bit loose. But I think we can tie it to the above
observations in two steps. First, recall that the binary function ‘c’ in a
content model structure is meant to map each pair of kontents k1 and k2 to
the kontent corresponding to the claim that k1 is contained in k2. The point
of the italics here is to emphasize that we’re bumping up against a fairly
subtle bit of use-mention business.

Think for the moment about the simplest case and compare the formulas p
and p→ q. Given a content model structure and an interpretation, the former
is directly interpreted as one of the kontents. Suppose, for concreteness,
that we have I(p) = {1, 2} and I(q) = {2, 3}. Unlike p, p → q isn’t directly
interpreted as a kontent. Instead, it is interpreted as the kontent corresponding
to the claim that {1, 2} ⊆ {2, 3}.

I want to be clear that I have no intuition at all about what kontent should
correspond to such a claim. Importantly, however, this means that I have no
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particular reason to believe that it ought to be interpreted as something that in
any way contains the kontent corresponding to p—that is, there’s no reason
to think that that kontent corresponding to the claim that {1, 2} ⊆ {2, 3} must
contain {1, 2}.

There is, then, a ‘degree of freedom’ introduced by the use of the ‘kontent
of the containment claim’ function c. This freedom, in turn, is what keeps
variables at different levels from, as Brady puts it, ‘interacting’. This makes
sense: since variables at different levels have some freedom from each other,
they can differ. Thus, when we are doing logic, we must assume they do
differ and see how much we can still get.

The problem, of course, is that while it seems clear from what’s been said
that the ‘c’ function introduces some amount of freedom, it’s not totally clear
how to precisely describe the amount of freedom it brings. After all, it’s
not as if this function is allowed to behave however it pleases—almost half
of the semantic postulates restrict its behavior in one way or another. The
point of the varying semantics introduced above was to quantify exactly how
much freedom it introduces. The answer, we saw, was this: it introduces
sufficient freedom to allow interpreting formulas occurring at different levels
as if they were completely different formulas. And this, it seems clear, is
better captured by requiring depth hyperformalism—which is very nearly
a homophonic translation of the degree-of-freedom bit as explicated by the
varying semantics into purely syntactic terms—than it is by depth relevance.

Conclusion and FutureWork

I’ve argued that it is depth-hyperformalism and not depth relevance that is
the right condition to require of logics of meaning containment. The heart of
the argument I gave was this: Brady’s own arguments for why we should
expect a logic of meaning containment to be depth relevant appeal to the
idea that depth might change meaning. But this is best captured by a varying
semantics. And the obvious syntactic analogue to depth-varying content
semantics is depth-hyperformalism and not depth relevance.

Future Work. Future work on content semantics ought to be constrained not
by requiring depth relevance but by requiring depth substitution invariance.
Elsewhere, this has been called ‘hyperformalism’. But as it becoming clear
(see e.g. [4], [11], and [8]), hyperformalism comes in a variety of flavors.
One wonders how far the above arguments generalize in Brady’s case.

It seems clear the arguments just given do in fact go a bit further than
described, though care needs to be taken. As an example: it’s not just
entailments that have their value computed by some non-lattice function.
Negations do too. This would seem, a priori, to also introduce a degree
of freedom. But as shown in [4], if we take follow this line to its natural
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conclusion, we end up at either B or BM, depending on the decisions made
along the way. In either case, we lose axiomatic contraposition and thus end
up at a logic strictly weaker than DJ.

So the degree of freedom afforded by the semantics Brady provides for
negation is less than the degree of freedom afforded by his semantics for the
conditional. Naı̈vely it’s unclear why this would be the case. One is tempted
to lay the blame on the Brady-an semantic postulates concerning the star (p3,
p4, and p11). But this doesn’t quite work—there are even more postulates
concerning the function c, but the freedom it allows is unrestricted. Thus,
some investigation of degrees of freedom allowed by the various functions
seems in order.

In a slightly different vein, it’s also quite natural to think that the contribu-
tion made by the antecedent of a conditional should differ—and, in Brady’s
semantics, intuitively does differ—from the contribution made by the con-
sequent of a conditional. But without a great deal of finesse, recognizing
those degrees of freedom is quite destructive. After all, we probably want to
preserve p→ p as an axiom.

This leads to my final conclusion: there’s a good deal more to be learned
from content semantics. Brady’s had the first few words on it. They’re
unlikely to be the last.
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