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Abstract

The present paper is inspired by Ross T. Brady’s work on semantics for many-valued logics
which also belong to the family of relevance. In particular, we aim to enhance his methodology
for (meta)completeness results with respect to a 2 set-up ternary relational semantics. In 1982,
Brady developed the 4-valued logic BN4 and endowed it with such semantics, providing both
strong soundness and completeness theorems. In the recent literature, six new 4-valued logics
have been defined as companions to the system BN4 and endowed with a bivalent Belnap-Dunn
type semantics. The aim of this paper is to deepen the knowledge of these new companions to
BN4 by providing a 2 set-up ternary relational semantics, thus following the same strategies Brady
applied to BN4 in [6].
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1 Introduction

The significance of Ross T. Brady’s work regarding relevant logics (and more precisely, weak relevant
logics) is by now well-known (see, for instance, [5, 7]). The present paper is inspired by his research
regarding logics from the relevance family; in particular, it is inspired by both his methodology for
(meta)completeness results and the logics he studied in [6]. In that article, Brady focused on developing
two new interesting many-valued logics within the family of relevance: the three-valued logic RM3
and the four-valued logic BN4. He also endowed those couple of logics with a 2 set-up Routley-Meyer
relational semantics and proved that both logics –RM3 and BN4 –are sound and complete with respect
to them.

The aim of this paper is twofold: (1) to deepen the knowledge of some 4-valued logics recently
developed as companions to Brady’s system BN4 [10]; (2) to follow Brady’s completeness methodology
as applied to BN4 in [6] and provide these new logics with a 2 set-up Routley-Meyer semantics.

In the following lines, we aim to summarise both the importance of Brady’s work regarding BN4
and the methods he employed in [6] as well as the main reasons why the present paper contributes to
his research on this particular topic and, from a more general perspective, expands the knowledge on
(weak) relevant logics 1 and their characteristic semantics. Firstly, we begin by enhancing the role of
Brady’s logic BN4 in the intersection between relevant and many-valued logics.

Brady developed the logic BN4 in 1982 by taking as the starting point the axiomatization of the
basic system B of Routley et al. ([22], Chapter 4). However, the system BN4 can also be seen as an
implicative expansion of Belnap’s logic B4 –which is equivalent to Anderson and Belnap’s well-known
system FDE (cf. [1, 2, 13]). As a matter of fact, the system BN4 has the same characteristic 4-valued
matrix set as Belnap’s B4, one of the values being ’n’, representing neither truth nor falsity. According
to Brady, the two factors just mentioned motivated the label BN4 (cf. [6], p. 32, note 1). On the other
hand, the importance of this system was summarised by Routley et al. as follows: “BN4 is the correct
logic for the 4-valued situation where the extra values are to be interpreted in the both and neither
senses” ([11], p. 253). Additionally, this system has even been regarded by some as the adequate
extension of FDE, were the latest to be expanded by means of a relevant conditional akin to that of
the relevant logic R [23].
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1At least on some quasi-relevant logics weaker than R and E, although stronger than some canonically weak logics

such as Routley and Meyer’s logic B.
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Over the last decade, Robles and Méndez conducted some research concerning the logic E4 –another
interesting 4-valued logic which was built upon a modification of the conditional function characteristic
of BN4. This new 4-valued logic was developed by them as a companion to BN4 worthy of consideration
among relevant and many-valued logics [17]. As a matter of fact, both of these systems, BN4 and
E4, can be respectively considered as the 4-valued logics of the relevant conditional and (relevant)
entailment, according to Robles and Méndez.

In the conclusions of [17], Robles and Méndez suggest that there might be other interesting com-
panions to BN4 and propose six different alternatives to the conditional functions characteristic of E4
and BN4. Research on the logics built upon those alternative (implicative) tables has been recently
carried out in [10]. The set formed by the aforementioned logics –labelled throughout this paper as
Lti-logics 2 –can be presented as the class of all implicative expansions of Belnap’s logic B4 containing
Routley and Meyer’s logic B while maintaining the conditional structure of MBN4 or ME4 (i.e., the
matrices upon which BN4 and E4 were initially built). Regarding their interest, it is worth underlining
that all the logics included in the said class are 4-valued paraconsistent and paracomplete logics with
natural conditionals –in the sense of Tomova (cf. [24])–that enjoy some of the characteristic properties
of relevant logics (as it is proven in [10], Section 9).

We now proceed to briefly sum up the origins and clarify the place of ternary relational semantics
(in particular, 2 set-up models) among non-classical logics.

In the early 70s of the last century, ternary relational semantics (also generally known as Routley-
Meyer relational semantics) was introduced (cf. [21, 20, 19]) in order to characterise relevant logics and
deal with some problems regarding their metalogical properties [1]. However, it was soon noticed that
ternary relational semantics was a useful tool for modelling different types of logics (see, for instance,
[8, 18, 16]).

On the other hand, the 2 set-up models (of Routley-Meyer semantics) are based upon a restriction
of the virtually infinite elements of the general models to just two. The origin of this particular kind
of models in ternary relational semantics seems however quite unclear and, although Brady’s paper
leads the attention towards [22], a precedent of such models may be found in [12] 3.

In [6], Brady also developed a 2 set-up Routley-Meyer relational semantics for the logics RM3 and
BN4. Concerning his strategy, he remarked: “the method of proof is fairly general and it is hoped
that other model structures can be axiomatized by appropriate modifications to the proof” ([6], p. 9).
Then, following the method developed by Brady as applied to the logic E4 in [17], we shall provide
the Lti-logics with such semantics. The present paper also shows that these logics are indeed strongly
sound and complete with respect to this semantics.

While general Routley-Meyer semantics has captured a great deal of attention since its inception,
there have been in comparison very few works regarding the 2 set-up models 4. Thus, the proposed
research will not only deepen our knowledge of those new systems –the so called Lti-logics–within
the family of (quasi-)relevant logics but also contributes to expand the range of application of both 2
set-up relational semantics and Brady’s strategies for completeness results (as applied by him to other
systems of the said family).

The paper is divided into five sections. In section 2, all the systems considered in this paper (i.e.,
the Lti-logics) are introduced together with the matrices upon which they were initially built. Then,
a 2 set-up Routley-Meyer semantics is developed for them and a proof of the soundness theorem is
provided in section 3. In section 4, we prove a series of necessary definitions and preliminary lemmas
of use in Section 5, where strong completeness of the Lti-logics is finally proved.

2 Systems considered in this paper: the Lti-logics

In this section, we display the systems of interest in this paper –the Lti-logics. First, we show the
matrices upon which the logics considered in this paper were built, i.e., the implicative variants of

2Where i refers to a numerical value assigned to each one of these logics. In particular, we are presented with eight
different systems: Lt1 is the label used for BN4 and Lt5 for E4. Regarding the other six, only Lt2 has been independently
studied and given a different specific label –i.e., EF4 [3].

3The reader is advised to consult the introduction of [4] for a more detailed picture of the origins of this specific kind
of models in Routley-Meyer semantics.

4Appart from the precedents mentioned above and Brady’s own work [6], we may direct any interested reader to
[15], where the first companion to BN4 –the logic E4–was endowed with a 2 set-up Routley-Meyer semantics, and to [4],
where the relation between reduced general models and 2 set-up models in ternary relational semantics is displayed.
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MBN4 and ME4 which verify Routley and Meyer’s logic B (cf. [10]).
The notions of Languages and Logics are fairly standard. The propositional language L consists of

a denumerable set of propositional variables p0, p1..., pn, ... and some or all of the following connectives
→, ∧, ∨, ¬. A, B, C, etc. are metalinguistic variables. Logics are formulated as Hilbert-style axiomatic
systems. The notions of proof and theorem are understood as it is customary (Γ ⊢L A means that A
is derivable from the set of wffs Γ in the logic L; and ⊢L A means that A is a theorem of the logic L).

Now, the matrices which determine the systems of interest for this paper are shown.

Definition 2.1 (The matrices which determine the Lti-logics –Mti) The propositional lan-
guage L consists of the connectives →, ∧, ∨ and ¬. The matrices Mti are the structures < V, D, 𭟋 >,
where (i) V is {0, 1, 2, 3} and it is partially ordered as shown in the following lattice:

(ii) D = {2, 3}; (iii) 𭟋 = {f→, f∧, f∨, f¬} where f∧ and f∨ are defined as the glb (or lattice meet)
and the lub (or lattice join), respectively. f¬ is an involution with f¬(0) = 3, f¬(3) = 0, f¬(1) = 1
and f¬(2) = 2. Tables for ∧, ∨ and ¬ are now displayed.

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

0 1 2 3
¬ 3 1 2 0

Finally, f→ is defined in each system according to the following tables5:

t1 (BN4)

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

t5 (E4)

→ 0 1 2 3
0 3 3 3 3
1 0 2 0 3
2 0 0 2 3
3 0 0 0 3

t2

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 0 2 3
3 0 0 0 3

t3

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 0 2 3
3 0 0 0 3

t4

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 1 2 3
3 0 1 0 3

t6

→ 0 1 2 3
0 3 3 3 3
1 0 2 0 3
2 0 1 2 3
3 0 0 0 3

t7

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
2 0 0 2 3
3 0 0 0 3

t8

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
2 0 1 2 3
3 0 0 0 3

Remark 2.2 (Implicative variants of MBN4 and ME4 which verify Routley and Meyer’s
logic B) The matrices considered in this paper are the only implicative variants of MBN4 (t2-t4)
and ME4 (t6-t8) which verify Routley and Meyer’s logic B (cf. [22, Chapter 4]). This fact was already
proved as a Proposition in [10, Proposition 3.2].

5From now on, the labels t1 and t5 will be used to refer to the implicative tables of MBN4 and ME4, respectively.
Labels t2-t4 will be used to refer to the implicative tables of the variants of MBN4 and, likewise, t6-t8 will be used for
those of the implicative variants of ME4.
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The eight logics considered in this paper are developed in this section as extensions of b4, the
system shown below (cf. Definitions 2.3 and 2.6). Therefore, the logic b4 is a system contained in
every Lti-logic (1 ≤ i ≤ 8), i.e., in every logic built upon the matrices characterized by the implicative
tables displayed in Definition 2.1. As a matter of fact, the label b4 is intended to abbreviate “basic
logic contained in every companion of BN4 or E4 which includes Routley and Meyer’s logic B”. We
call the logic b4 basic in the sense that it has a mere instrumental role: it serves as a common ground
to build all the Lti-logics.

Definition 2.3 (The basic logic b4) The logic b4 is axiomatized with the following axioms and
rules ADJ, MP, dMP, dPREF, dSUF, dCON, dCTE displayed below:
Axioms

A1. A → A
A2. (A ∧B)→ A / (A ∧B)→ B
A3. [(A → B)∧(A→ C)]→[A→(B ∧ C)]
A4. A→(A ∨B) / B →(A ∨B)
A5. [(A→ C)∧(B → C)]→[(A ∨B)→ C]
A6. [A∧(B ∨ C)]→[(A ∧B)∨(A ∧ C)]
A7. ¬¬A → A
A8. A → ¬¬A
A9. ¬A → [A ∨ (A → B)]
A10. B → [¬B ∨ (A → B)]
A11. (A ∨ ¬B) ∨ (A → B)
A12. (A → B) ∨ [(¬A ∧B) → (A → B)]

Rules of inference
Adjunction: A,B ⇒ A ∧B
Modus Ponens: A,A → B ⇒ B
Disjunctive Modus Ponens: C ∨A,C ∨ (A → B) ⇒ C ∨B
Disjunctive Prefixing: C ∨ (A → B) ⇒ C ∨ [(D → A) → (D → B)]
Disjunctive Suffixing: C ∨ (A → B) ⇒ C ∨ [(B → D) → (A → D)]
Disjunctive Contraposition: C ∨ (A → B) ⇒ C ∨ (¬B → ¬A)
Disjunctive Counterexample: C ∨ (A ∧ ¬B) ⇒ C ∨ ¬(A → B)

Remark 2.4 (About the instrumental system b4) b4 is the result of adding the axioms A9-
A12 and rules dMP, dPREF, dSUF, dCON and dCTE to Routley and Meyer’s basic logic B (cf. [22,
Chapter 4]). As a matter of fact, b4 can be seen as an extension of dB (i.e., the disjunctive version
of Routley and Meyer’s logic B). In particular, non-disjunctive rules PREF, SUF, CON and CTE can
easily be derived from their disjunctive version plus the rule MP, A4 and T1 (cf. Definition 2.5).

Next, I prove some theorems of b4 which will be useful throughout this paper. Since b4 is contained
in all the Lti-logics, these formulae are also theorems of the Lti-logics.

Proposition 2.5 (Some theorems of b4) The following theorems are derivable in b4.
T1 A ↔ (A ∨A)
T2 ¬(A ∧B)↔(¬A ∨ ¬B)
T3 (¬A ∧ ¬B) ↔ ¬(A ∨B)
Proof. T1-T3 are theorems of B (actually, they are theorems of FDE; cf. [1, p. 158]), a system

included in b4. ■

In the following lines, I introduce the extensions of b4 which I have referred to from the beginning
of the section. First of all, I define the notion of extensions (and expansions) of a propositional logic.

Definition 2.6 (Extensions and expansions of a propositional logic L) Let L be a logic for-
mulated with axioms a1,..., an and rules of derivation r1,..., rm. A logic L’ includes L iff a1,..., an are
theorems of L’ and rules r1,..., rm are provable in L’. If such were the case, L’ would be either an exten-
sion of L (i.e., a strengthening of L in the language of L) or an expansion of it (i.e., a strengthening of
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L in an expansion of the language of L). We shall generally refer to extensions of a logic L by EL-logics.

Given the previous definition, it is clear that the Lti-logics we introduce in Definition 2.7 are
Eb4-logics, i.e., extensions of the basic logic b4.

Definition 2.7 (The Lti-logics) By Lti-logics (1 ≤ i ≤ 8), we refer to the logics built upon the
matrices Mti (1 ≤ i ≤ 8) shown in Definition 2.1. Each Lti-logic is the result of adding the following
axioms (from the list below) to b4:

Lt1 (BN4): A13-A15
Lt2: A16-A22
Lt3: A13, A14, A17, A18, A21-A23
Lt4: A15, A16, A19-A21
Lt5 (E4): A16-A20, A22, A24-A26
Lt6: A16, A21, A22, A23, A24, A27, A28
Lt7: A13, A17, A18, A20, A22, A25, A29
Lt8: A13, A20, A22, A25, A28, A29

Now, I display the list of axioms from which the Lti-logics are built:

A13. (A ∧ ¬B) → [(A ∧ ¬B) → ¬(A → B)]

A14. A ∨ [¬(A → B) → A]

A15. ¬B ∨ [¬(A → B) → ¬B]

A16. [A ∧ (A → B)] → B

A17. [(A → B) ∧ ¬B] → ¬A

A18. A → [B ∨ ¬(A → B)]

A19. ¬B → [¬A ∨ ¬(A → B)]

A20. [¬(A → B) ∧ ¬A] → A

A21. ¬(A → B) → (A ∨ ¬B)

A22. [¬(A → B) ∧B] → ¬B

A23. B → {[B ∧ ¬(A → B)] → A}

A24. (A → B) ∨ ¬(A → B)

A25. (¬A ∨B) ∨ ¬(A → B)

A26. [(A → B) ∧ (A ∧ ¬B)] → ¬(A → B)

A27. ¬(A → B) ∨ [(A ∧ ¬B) → ¬(A → B)]

A28. {[¬(A → B) ∧ ¬A] → ¬B} ∨ ¬B

A29. {[¬(A → B) ∧B] → A} ∨A

3 2 set-up Routley-Meyer semantics for the Lti -logics

In the present section, a 2 set-up Routley-Meyer semantics for the Lti-logics displayed in the previous
section is developed. I begin by presenting the Lti-models of interest in this paper and remarking some
facts concerning the ternary relation.
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Definition 3.1 (2 set-up Lti-models) A 2 set-up Lti-model (Lti-model, for short) is a structure
(K, R, ∗, ⊨) where

• K is a set which contains two elements –labelled O and O∗– and no other elements. O is the
only designated set-up and O∗ is its ∗-image6.

• ∗ is an involutive unary operator defined on K such that for any x ∈ K, x = x∗∗.

• R is a ternary relation on K defined as follows for each i (1 ≤ i ≤ 8): if a, b, c ∈ K, then Rabc
iff

Lt1-models: (a = O & b = c) or (a ̸= b & c = O∗)7.

Lt2-models: b = c or (a = c = O∗ & b = O).

Lt3-models: (a = O & b = c) or (a = O∗ & b = O);

Lt4-models: a = b = c or (c = O∗ & a ̸= b).

Lt5-models: a = O∗ or b = c.

Lt6-models: (a = O & b = c) or a = b = c or (a = O∗ & b ̸= c).

Lt7-models: (a = O & b = c) or (b = c = O) or (a = O∗ & b ̸= c).

Lt8-models: (a = O & b = c) or (a ̸= O & b ̸= c).

• ⊨ is a (valuation) relation from K to the set of all wffs such that the following conditions (clauses)
are satisfied for every propositional variable p, wffs A, B and a ∈ K :

(i) a ⊨ p or a ⊭ p

(ii) a ⊨ A ∧B iff a ⊨ A & a ⊨ B

(iii) a ⊨ A ∨B iff a ⊨ A or a ⊨ B

(iv) a ⊨ A → B iff for all b, c ∈ K, (Rabc & b ⊨ A)⇒ c ⊨ B

(v) a ⊨ ¬A iff a∗ ⊭ A

Remark 3.2 (Ternary relations in K) Suppose O ̸= O∗. Now, given the definition of R (cf.
Definition 3.1), the following ternary relations are the only ones holding for each Lti-model (1 ≤ i ≤ 8):

Lt1-model: R ={ROOO, ROO∗O∗, RO∗OO∗}.

Lt2-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O∗, RO∗OO}.

Lt3-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗OO}.

Lt4-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O∗}.

Lt5-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O∗, RO∗O∗O, RO∗OO}.

Lt6-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O∗, RO∗O∗O}.

Lt7-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O, RO∗OO}.

Lt8-model: R ={ROOO, ROO∗O∗, RO∗OO∗, RO∗O∗O}.

Next, we stablish the notions of truth, validity and semantic consequence.

Definition 3.3 (Truth in a class of L-models) Let L be an Lti-logic, M be a class of L-models
and M ∈ M. A wff A is true in M iff O ⊨ A in this model.

6In contrast to general Routley-Meyer relational semantics, the 2 set-up semantics is a special kind of reduced
Routley-Meyer semantics –this is, a ternary relational semantics with reduced models. Reduced models in Routley-
Meyer semantics are those where the set of designated points is reduced to one element. As opposed to other reduced
models, 2 set-up models are also characterized by the fact that the set of general worlds or set-ups is reduced to two
elements: the designated world and its ∗-image. Concerning both types of ternary relational semantics and the relation
between them, cf. [4].

7This clause is equivalent to Brady’s clause for BN4-models (i.e., our Lt1-models): (a ̸= O or b = c) & [a ̸= O∗ or
(b = O & c = O∗)]. Cf. [6].
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Definition 3.4 (Validity in a class of L-models) Let L be an Lti-logic, M be a class of L-models
and M ∈ M. A wff A is valid in M (in symbols, ⊨ A) iff O ⊨ A in all M ∈ M.

Definition 3.5 (Semantic consequence in a class of L-models) Let L be an Lti-logic and M
be a class of L-models. Then, for all M ∈ M, any set of wffs Γ and wff A: Γ ⊨M A (A is a semantic
consequence of Γ in the model M) iff O ⊨ A whenever O ⊨ Γ (in particular, O ⊨ Γ iff O ⊨ B for all
B ∈ Γ ). Then, Γ ⊨M A (A is a semantic M-consequence of Γ ) iff Γ ⊨M A for all M ∈ M.

Proposition 3.6 (O∗ ⊨ ¬A iff O ⊭ A) Let L be an Lti-logic. For any L-model M and wff A,
O∗ ⊨ ¬A iff O ⊭ A.

Proof. By clause (v) in Definition 3.1 and the involutiveness of ∗. ■

Lemma 3.7 (Entailment lemma) Let L be an Lti-logic (1 ≤ i ≤ 8), for any wffs A, B, ⊨ A → B
iff (a ⊨ A ⇒ a ⊨ B for all a ∈ K) in all L-models.

Proof. This proof is completely similar for any of the Lti-logics (1 ≤ i ≤ 8) and can be found in
the literature (cf. [15, Lemma 3.8]).

Lemma 3.8 (Soundness of the Lti-logics) Let L be an Lti-logic (1 ≤ i ≤ 8), for any set of wffs
Γ and wff A, if Γ ⊢Lti A, then Γ ⊨Lti A.

Proof. We have to prove three cases: (I) A ∈ Γ ; (II) the rules preserve L-validity; (III) The
axioms A1-A29 are valid in the corresponding Lti-logic. By using the labels (i)-(v) throughout the
following proofs, we shall refer to the clauses in Definition 3.1. Firstly, the proof of case (I) is trivial.
Let us prove now case (II). The proofs of cases when A is derived by ADJ and MP are displayed in
[15]. It remains to prove the cases when A is derived by dMP, dSUF, dPREF, dCON and dCTE. A
couple of instances will suffice as an illustration. Let us prove the cases when A is derived by (a) dSUF
and (b) dCTE.

(a) A is derived by dCTE. The proof is identical for any of the Lti-logics considered in this paper.
Suppose Γ ⊨ D∨(B∧¬C) and O ⊨ Γ . Then, we have (1) O ⊨ D∨(B∧¬C) by Definition 3.5. Further,
as reductio hypothesis, suppose (2) O ⊭ D ∨ ¬(B → C), therefore (3) O ⊭ D and (4) O ⊭ ¬(B → C)
(i.e., O∗ ⊨ B → C) by (iii). On the other hand, given (1), we have (5) O ⊨ D or (6) O ⊨ B ∧ ¬C.
Therefore (7) O ⊨ B ∧ ¬C (i.e., O ⊨ B and O∗ ⊭ C), given (3). Lastly, by (4), (7) and the postulate
RO∗OO∗ –which is shared by all the Lti-logics (cf. Remark 3.2)–, we get (8) O∗ ⊨ C, contradicting
(7).

(b) A is derived by dSUF. We shall display the proof for the logic Lt5 (i.e., E4) and then provide a
few comments on how it could be easily adapted to suit the rest of the Lti-logics. As in the previous
case, we assume Γ ⊨ E ∨ (B → C) and O ⊨ Γ , therefore, by Definition 3.5, (1) O ⊨ E ∨ (B → C) (i.e.,
O ⊨ E or O ⊨ B → C). We also suppose (2) O ⊭ E ∨ [(C → D) → (B → D)] by reductio, this is, (3)
O ⊭ E and (4) O ⊭ (C → D) → (B → D). Given (1) and (3), we clearly have (5) O ⊨ B → C. Then,
by applying clause (iv) to (4), there are x, y ∈ K such that ROxy, x ⊨ C → D and y ⊭ B → D. Now,
given the definition of R in Lt5 (cf. Remark 3.2), we have to consider the two following alternatives
(6) and (7): (6i) ROOO, (6ii) O ⊨ C → D, (6iii) O ⊭ B → D or (7i) ROO∗O∗, (7ii) O∗ ⊨ C → D,
(7iii) O∗ ⊭ B → D. Suppose (6), then there are z, w ∈ K such that ROzw, z ⊨ B and w ⊭ D.
Now, we have two alternatives again: (8i) ROOO, (8ii) O ⊨ B, (8iii) O ⊭ D or (9i) ROO∗O∗, (9ii)
O∗ ⊨ B and (9iii) O∗ ⊭ D. Let us first consider (8), by applying clause (iv) twice, we first get (10)
O ⊨ C –given (5), (8i) and (8ii)– and therefore, (11) O ⊨ D –given (6ii) and (8i)–, which contradicts
(8iii). Similarly, when we suppose (9), we get first (12) O∗ ⊨ C –given (5), (9i) and (9ii)– and in
consequence, (13) O∗ ⊨ D –given (6ii) and (9i)–, contradicting (9iii). Next, we have to consider case
(7) above. Given (7iii), there are z, w ∈ K such that RO∗zw, z ⊨ B and w ⊭ D. Thus, we have to
consider four different alternatives in this case (cf. the definition of R for the system Lt5 displayed in
Remark 3.2): (14i) RO∗OO∗, (14ii) O ⊨ B, (14iii) O∗ ⊭ D; (15i) RO∗OO, (15ii) O ⊨ B, (15iii) O ⊭ D;
(16i) RO∗O∗O∗, (16ii) O∗ ⊨ B, (16iii) O∗ ⊭ D; (17i) RO∗O∗O, (17ii) O∗ ⊨ B, (17iii) O ⊭ D. Now,
a contradiction can easily be found in each of these cases following the preceding method. However,
it is worth noting that for some of these cases postulates ROOO or ROO∗O∗ are also needed –which
entails no additional difficulty since they both are included in every Lti-model (cf. Remark 3.2). As
for the rest of the Lti-logics, omitting some steps from the given proof will be sufficient. For instance,
in order to prove the fact that rule dSUF preserves validity in the logic Lt1 (i.e., BN4), there is no
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need to consider cases (15), (16) and (17) above since the definition of R in BN4 does not include the
postulates of these cases. Something similar can be said for the rest of the Lti-logics8.

(III) The axioms A1-A12 are valid in all the Lti-logics (1 ≤ i ≤ 8) and the axioms A13-A29 are valid
in the corresponding Lti-logics (cf. Definition 2.7). We shall prove a few instances as an illustration.
On the one hand, A1-A8 are classic relevant axioms and their proofs are similar to those given for
general RM-semantics (cf. [22, chapter 4]). The validity of A9 is proven as in [15] and A10 can be
proven in a similar way. Let us now prove a few other axioms as examples. The use of the Entailment
Lemma (cf. Lemma 3.7) will simplify the proofs of axioms whose main connective is a conditional.

A12 (A → B) ∨ [(¬A ∧ B) → (A → B)] is valid in every Lti-logic (1 ≤ i ≤ 8). For some model in
any Lti-logic, suppose (1) O ⊭ (A → B) ∨ [(¬A ∧ B) → (A → B)] as the reductio hypothesis. Then,
(2) O ⊭ (A → B) and (3) O ⊭ (¬A ∧ B) → (A → B). By (3), there are x, y ∈ K such that ROxy,
x ⊨ ¬A ∧ B, y ⊭ A → B. We have to consider two cases: (4i) ROOO, (4ii) O ⊨ ¬A ∧ B (i.e., O∗ ⊭ A
and O ⊨ B), (4iii) O ⊭ A → B and (5i) ROO∗O∗, (5ii) O∗ ⊨ ¬A ∧ B (i.e., O ⊭ A and O∗ ⊨ B),
(5iii) O∗ ⊭ A → B. Let us first consider (4). Proceeding as before, we have that there are z, w ∈ K
such that ROzw, z ⊨ A, w ⊭ B. Therefore, we face two more alternatives: (6i) ROOO, (6ii) O ⊨ A,
(6iii) O ⊭ B and (7i) ROO∗O∗, (7ii) O∗ ⊨ A, (7iii) O∗ ⊭ B. However, (4ii) contradicts (6iii) and (7ii).
Let us now suppose (5). On the other hand, we also have for some a, b ∈ K, ROab, a ⊨ A, b ⊭ B,
given (2). Again, there are only a couple of possibilities: (8i) ROOO, (8ii) O ⊨ A, (8iii) O ⊭ B or (9i)
ROO∗O∗, (9ii) O∗ ⊨ A, (9iii) O∗ ⊭ B. However, (5ii) contradicts (8ii) and (9iii).

A18 A → [B ∨ ¬(A → B)] is valid in the Lti-logics such that i ∈ {2, 3, 5, 7}. Two cases must be
considered. Let L be one of the aforementioned Lti-logics, for an arbitrary L-model, (a) O ⊨ A ⇒ O ⊨
B ∨ ¬(A → B) and (b) O∗ ⊨ A ⇒ O∗ ⊨ B ∨ ¬(A → B). Case (a): By reductio, suppose (1) O ⊨ A
but (2) O ⊭ B ∨ ¬(A → B) (i.e., O ⊭ B and O∗ ⊨ A → B). Given (1), (2) and the definition of R
for the considered Lti-logics (cf. Definition 3.1 and Remark 3.2), we use (3) RO∗OO and clause (iv)
in Definition 3.1 to obtain (4) O ⊨ B, which contradicts (2). Case (b): we proceed similarly but use
postulate ROO∗O∗ (valid in Lt2, Lt3, Lt5 and Lt7) instead.

A22 [¬(A → B) ∧ B] → ¬B is valid in the Lti-logics such that i ∈ {2, 3, 5, 6, 7, 8}. As in A18,
we have to consider two cases9. Case (a): suppose (1) O ⊨ ¬(A → B) ∧ B (i.e., O∗ ⊭ A → B and
O ⊨ B) but (2) O ⊭ ¬B (i.e., O∗ ⊨ B). Then, there are x, y ∈ K such that RO∗xy, x ⊨ A and y ⊭ B.
Now, the number of cases we face depends on how R is defined in each particular Lti-model. Let us
consider by way of example the case for Lt5-models. In this case, we face four different alternatives:
(3i) RO∗O∗O∗, (3ii)O∗ ⊨ A, (3iii) O∗ ⊭ B; (4i) RO∗O∗O, (4ii)O∗ ⊨ A, (4iii) O ⊭ B; (5i) RO∗OO∗,
(5ii)O ⊨ A, (5iii) O∗ ⊭ B; (6i) RO∗OO, (6ii) O ⊨ A, (6iii) O ⊭ B. However, every alternative (iii)
contradicts either (1) or (2). Case (b): suppose (1) O∗ ⊨ ¬(A → B)∧B (i.e., O ⊭ A → B and O∗ ⊨ B)
but (2) O∗ ⊭ ¬B (i.e., O ⊨ B). Then, there are x, y ∈ K such that ROxy, x ⊨ A and y ⊭ B. Then,
we only have to consider two alternatives: (3) ROOO, O ⊨ A, O ⊭ B; (4) ROO∗O∗, O∗ ⊨ A, O∗ ⊭ B.
Again, these alternatives contradict (2) and (1), respectively.

A25 (¬A ∨ B) ∨ ¬(A → B) is valid in the Lti-logics such that i ∈ {5, 6, 7, 8}. For some model
in any of the Lti-logics belonging to the previous subset, suppose (1) O ⊭ (¬A ∨ B) ∨ ¬(A → B) by
reductio, this is, (2) O ⊭ ¬A∨B (i.e., O∗ ⊨ A and O ⊭ B) and (3) O ⊭ ¬(A → B) (i.e., O∗ ⊨ A → B).
Then, by the definition of R in the models of the considered systems (cf. Remark 3.2), we have (4)
RO∗O∗O. Finally, we get O ⊨ B –thus, contradicting (3)– by clause (iv) given (2), (3) and (4). ■

4 Useful preliminary Lemmas to the Completeness Theorem

First of all, we set out some preliminary definitions concerning the notions of theories and the classes
of theories considered in this paper. We underline that the label EL will be used throughout this
section to refer to an extension of the logic L (cf. Definition 2.6). In particular, the following notions
are displayed in general for any Eb4-logic –i.e., for any extension of the logic b4– with no additional
(primitive) rules to those of b4 (cf. Definition 2.3). It is worth noting that we shall only provide a

8In order to check which steps should be omitted for the corresponding proofs in the rest of the Lti-logics, the reader
is advised to review Remark 3.2. We shall find alike proof outlines throughout this paper and proceed in a similar
manner.

9Similar to the proof of dSUF, case (i) is different for each of the considered Lti-logics depending on how R is defined
in each of the Lti-models (cf. Remark 3.2). We proceed as done in the proof of suffixing, this is, we display the proof of
case (i) for the logic Lt5. Adapting this proof to any other of the Lti-logics (i ∈ {2, 3, 5, 6, 7, 8}) is trivial.
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brief outline of the proofs for the propositions displayed in this section since the complete proofs for
the very same range of logics are already available (cf. [10]).

Definition 4.1 (Eb4-theories) Let L be an Eb4-logic. An L-theory a is a set of wffs closed under
Adjunction (Adj) and provable L-entailment (L-ent). That is to say, a set of wffs is closed under Adj
iff, whenever A, B ∈ a, then A ∧ B ∈ a; a set of wffs is closed under L-ent iff, whenever A → B is a
theorem of L and A ∈ a, then B ∈ a.

Definition 4.2 (Types of Eb4-theories) Let L be an Eb4-logic and a an L-theory. We set (1) a
is prime iff, for wffs A and B, whenever A ∨ B ∈ a, then either A ∈ a or B ∈ a; (2) a is regular iff a
contains all theorems in L; (3) a is trivial iff it contains every wff; (4) a is empty iff it contains no wff.

Definition 4.3 (Sets of wffs closed under a certain rule) A set of wffs Γ is closed under a rule
r iff the conclusion of r belongs to Γ whenever the hypothesis of r belongs to Γ .

Definition 4.4 (Full regularity) Let L be an Eb4-logic, an L-theory a is fully regular iff it is a
regular L-theory (cf. Definitions 4.1 and 4.2) which is closed under the rules of b4 (i.e., MP, dMP,
dCON, dPREF, dSUF, dCTE; cf. Definition 4.3).

Next, we note that fully regular L-theories are closed under the derived rules of b4 (i.e., “the
non-disjunctive rules”).

Proposition 4.5 (Derived rules under which fully regular Eb4-theories are closed) Let L
be an Eb4-logic, if a is a fully regular L-theory, then it is closed under (1) CON, (2) PREF, (3) SUF,
(4) CTE, (5) MT and (6) TRAN.

Proof. Cases (1)-(4): by A4 and T1 (A ↔ (A∨A)) and the fact that a is fully regular (i.e., closed
under dCON, dPREF, dSUF and dCTE, respectively for each case). Cases (5)-(6): by hypothesis, a is
fully regular (therefore closed under MP) and by the fact that a is closed under CON and SUF (given
what has already been proved in cases (1) and (3)), respectively for each case. ■

In what follows, we shall introduce the extension lemmas. These lemmas are essential to the
completeness theorem and are developed here following Routley et al.’s method [22, Chapter 4] as
applied in [6, 14, 17]. Firstly, we note the following definition.

Definition 4.6 (Disjunctive Eb4-derivability) Let L be an Eb4-logic, Γ and Θ be non-empty sets
of wffs, Θ is disjunctively derivable from Γ in Eb4 (in symbols, Γ ⊢d

L Θ) iff A1∧ ...∧An ⊢L B1∨ ...∨Bn

for some wffs A1, ..., An ∈ Γ and B1, ..., Bn ∈ Θ.

The following is a necessary lemma to prove the Extension to maximal sets lemma (Lemma 4.9).

Lemma 4.7 (Preliminary lemma to the extension lemma) Let L be an Eb4-logic closed under
no other rules than those specified in Definition 2.3. For any wffs A, B1,..., Bn, if {B1, ..., Bn} ⊢L A,
then, for any wff C, C ∨ (B1 ∧ ... ∧Bn) ⊢L C ∨A.

Proof. Induction on the length of A (cf. p. 27 in [6] and also Lemma 6.2 in [17] or Lemma 7.3 in
[14]). ■

Now, the process of extending sets of wffs to maximal sets is required.

Definition 4.8 (Maximal sets) Let L be an Eb4-logic, Γ is an L-maximal set of wffs iff Γ ⊬d
L Γ

(Γ is the complement of Γ ).
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Lemma 4.9 (Extension to maximal sets) Let L be an Eb4-logic closed under no other rules than
those specified in Definition 2.3. Let Γ and Θ be sets of wffs such that Γ ⊬d

L Θ. Then, there are sets
of wffs Γ ′ and Θ′ such that Γ ⊆ Γ ′, Θ ⊆ Θ′, Θ′ = Γ ′ and Γ ′ ⊬d

L Θ′ (i.e., Γ ′ is an L-maximal set such
that Γ ′ ⊬d

L Θ′).
Proof. Cf. Lemma 9 in [6] and also Lemma 6.4 in [17] or Lemma 7.4 in [14]. ■

Finally, the Primeness Lemma is proved.

Lemma 4.10 (Primeness) Let L be an Eb4-logic closed under no other rules than those specified
in Definition 2.3. If Γ is an L-maximal set, then it is a fully regular prime L-theory.

Proof. This Lemma was already provided for the exact same frame of logics in [10, Lemma 7.5]. ■

In order to prove the completeness theorem in Section 5, the following items are also required.
First of all, we recall the notion of “the set of consequences of a given set of wffs Γ in a logic L”.

Definition 4.11 (The set CnΓ [L]) Let L be an Lti-logic, the set of consequences in L of a set of
wffs Γ (in symbols CnΓ [L]) is defined as follows: CnΓ [L] = {A | Γ ⊢L A}.

In relation to the previous definition, we note the following remark.

Remark 4.12 (The set of consequences of Γ in any Lti-logic is a fully regular theory) Let
L be an Lti-logic. Then, it is obvious that for any Γ , CnΓ [L] contains all theorems of L and is closed
under the rules of L. Consequently, it is also closed under L-entailment.

To conclude this section, we build the regular prime L-theory T upon which the canonical model
is defined.

Proposition 4.13 (The building of T ) Let L be an Lti-logic, Γ a set of wffs and A a wff such
that Γ ⊬L A. Then, there is a fully regular, prime L-theory T such that Γ ⊆ T and A /∈ T .

Proof. Suppose Γ ⊬L A (i.e., A /∈ CnΓ [L] given Remark 4.1). Then, CnΓ [L] ⊬d
L {A} by

Definition 4.6; otherwise (B1 ∧ ... ∧ Bn) ⊢L A for some B1, ..., Bn ∈ Γ and hence A would be in
CnΓ [L] after all. Next, there is some (fully regular) prime L-theory T such that Γ ⊆ T (since
Γ ⊆ CnΓ [L]) and A /∈ T , by application of Lemmas 4.9 and 4.10. ■

5 Completeness of the Lti -logics

In this section, the completeness theorem for the Lti-logics is provided. We first note some preliminary
notions and then the canonical model is defined upon the theory T built at the end of Section 4.

Definition 5.1 (RP , ∗Pand ⊨P ) Let KP be the set of all prime theories. Then, RP , ∗P and ⊨P

are defined as follows for all a, b, c ∈ KP and wffs A, B: (i) RPabc iff (A → B ∈ a & B ∈ b) ⇒ B ∈ c;

(ii) a∗
P

= {A | ¬A /∈ a}; (iii) a ⊨P A iff A ∈ a.

Next, we prove that ∗P is an operation on KP .

Proposition 5.2 (∗P is an operation on KP ) (1) Let a ∈ KP . Then, a∗
P ∈ KP as well. (2) For

any wff A, ¬A ∈ a∗
P

iff A /∈ a.
Proof. Cf. [22, Chapter 4]. (1) We get that a∗ is closed under L-ent by the rule CON and the

fact that a is closed under L-ent; a∗ is closed under Adj by T2; a∗ is prime by T3. (2) By A7 and A8. ■

In what follows, the canonical model is defined upon the fully regular and prime L-theory T built
in Proposition 4.13.
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Definition 5.3 (The canonical L-model) Let L be an Lti-logic, the canonical L-model is the

structure < KC , RC , ∗C , ⊨C>, where KC = {T , T ∗C} and T is the fully regular and prime L-theory
built in Proposition 4.13. Additionally, ∗C , RC and ⊨C are the restrictions of ∗P , RP and ⊨P to the
set KC .

Let L be an Lti-logic, the canonical L-model will be shown to be an L-model by means of which
non-theorems of L are falsified. From now on, the subscripts P and C are omitted above ∗ and R
when there is no risk of confusion. First, we show that ∗ is an involution on K.

Proposition 5.4 (a = a∗∗) For any a ∈ KP , a = a∗
P ∗p

.
Proof. Immediate by A7, A8 and closure of a under L-ent. ■

Corollary 5.5 (∗C is an involutive operation on KC) The operation ∗C is an involutive operation

on KC , this is, for any a ∈ KC , a∗
C ∈ KC and moreover, a = a∗

C∗C

.
Proof. Immediate by Proposition 5.2 and Proposition 5.4. ■

Finally, it remains to prove that the ternary relation R and the valuation clauses in Definition 3.1
hold canonically.

Lemma 5.6 (R holds canonically in each Lti-model) If a, b, c ∈ KC , then RCabc iff

Lt1-models: (a = T & b = c) or (a ̸= b & c = T ∗C

).

Lt2-models: b = c or (a = c = T ∗C

& b = T ).

Lt3-models: (a = T & b = c) or (a = T ∗C

& b = T ).

Lt4-models: a = b = c or (c = T ∗C

& a ̸= b).

Lt5-models: a = T ∗C

or b = c.
Lt6-models: (a = T & b = c) or a = b = c or (a = T ∗C

& b ̸= c).

Lt7-models: (a = T & b = c) or (b = c = T ) or (a = T ∗C

& b ̸= c).
Lt8-models: (a = T & b = c) or (a ̸= T & b ̸= c).

Proof. Given Remark 3.2 and Corollary 5.5, a subset of the following relations have to be proven
for each Lti-logic (1 ≤ i ≤ 8): (a) RT T T ; (b) RT T ∗T ∗; (c) RT ∗T T ∗; (d) RT ∗T ∗T ∗; (e) RT ∗T T ;
(f) RT ∗T ∗T . It is worth underlining that T is closed under the rules of b4 since it is fully regular (cf.
Definition 5.3).

(a) RT T T holds in any canonical Lti-model (1 ≤ i ≤ 8). For wffs A, B, suppose A → B ∈ T and
A ∈ T . Then, B ∈ T follows immediately given that T is closed under MP, as it was required.

(b) RT T ∗T ∗ holds in any canonical Lti-model (1 ≤ i ≤ 8). For wffs A, B, suppose (1) A → B ∈ T
and (2) A ∈ T ∗ (i.e., ¬A /∈ T ). Now, we get (3) ¬B → ¬A ∈ T by the fact that T is closed under
CON. Then, (4) ¬B /∈ T (i.e, B ∈ T ∗) by 2, 3 and the closure of T under MP.

(c) RT ∗T T ∗ holds in any canonical Lti-model (1 ≤ i ≤ 8). For wffs A, B, suppose (1) A → B ∈ T ∗

(i.e., ¬(A → B) /∈ T ) and (2) A ∈ T . Furthermore, suppose (3) B /∈ T ∗ (i.e., ¬B ∈ T ) by reductio.
Then, (4) A ∧ ¬B ∈ T given that T is closed by Adj and therefore, we also get (5) ¬(A → B) ∈ T by
the closure of T under CTE. However, 5 contradicts 1.

(d) RT ∗T ∗T ∗ holds in the canonical Lti-model such that i ∈ {2, 4, 5, 6}. For wffs A, B, suppose
(1) A → B ∈ T ∗ (i.e., ¬(A → B) /∈ T ) and (2) A ∈ T ∗ (i.e., ¬A /∈ T ). Then, we have (3)
¬A∨¬(A → B) /∈ T by the primeness of T . Finally, by A19 (¬B → [¬A∨¬(A → B)]) and that T is
closed under L-ent, (4) ¬B /∈ T (i.e., B ∈ T ∗).

(e) RT ∗T T holds in the canonical Lti-model such that i ∈ {2, 3, 5, 7}. For wffs A, B, suppose (1)
A → B ∈ T ∗ (i.e., ¬(A → B) /∈ T ) and (2) A ∈ T . By A18 (A → [B ∨ ¬(A → B)]) and 2, we get
B ∨ ¬(A → B) ∈ T , this is, B ∈ T or ¬(A → B) ∈ T , by primeness of T , whence B ∈ T given 1, as
it was to be proved.

(f) RT ∗T ∗T holds in the canonical Lti-model such that i ∈ {5, 6, 7, 8}. For wffs A, B, suppose (1)
A → B ∈ T ∗ (i.e., ¬(A → B) /∈ T ) and (2) A ∈ T ∗ (i.e., ¬A /∈ T ). By A25 ((¬A ∨ B) ∨ ¬(A → B)),
we get (3) ¬A ∨B ∈ T or ¬(A → B) ∈ T since T is regular and prime. Thus, (4) ¬A ∨B ∈ T (given
1), i.e., ¬A ∈ T or B ∈ T . Whence, by 2, we have B ∈ T . ■
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Lemma 5.7 (Clauses (i)-(v) hold canonically) Let L be an Lti-logic (1 ≤ i ≤ 8). Clauses (i)-(v)
in Definition 3.1 are satisfied by the canonical L-model.

Proof. The reader is advised to cf. Definitions 5.1 and 5.3. Clause (i) is immediate; clauses (ii),
(iii), (v) and (iv) from left to right are proved similarly as in [15, Lemma 4.13]. Let us now prove
clause (vi) from right to left. Firsly, we have to consider two situations: the first component in the
ternary relation is (I) T or it is (II) T ∗.

(I) For some wffs A and B, suppose A → B /∈ T as hypothesis. Given RT T T and RT T ∗T ∗ (cf.
Remark 3.2), we have to prove: (A ∈ T & B /∈ T ) or (A ∈ T ∗ & B /∈ T ∗). By reductio, suppose that
this is not the case. Then, we obtain the following alternatives: (a) A /∈ T & A /∈ T ∗; (b) A /∈ T &
B ∈ T ∗; (c) B ∈ T & A /∈ T ∗; (d) B ∈ T & B ∈ T ∗. Next, we prove that none of these alternatives
is possible. In particular, we will get A → B ∈ T from each of them. Thus, a contradiction follows
from each alternative and therefore case (I) will be proved. For each alternative, we will use some of
the properties of T (cf. Proposition 4.13) and one of the axioms of b4:

(a) A /∈ T & A /∈ T ∗ (i.e., ¬A ∈ T ) by A9 (¬A → [A ∨ (A → B)]) and the fact that T is closed
under L-ent and by its primeness.

(b) A /∈ T & B ∈ T ∗ (i.e., ¬B /∈ T ) by A11 ((A∨¬B)∨(A → B)) and the regularity and primeness
of T .

(c) B ∈ T & A /∈ T ∗ (i.e., ¬A ∈ T ) By A12 ((A → B) ∨ [(¬A ∧ B) → (A → B)]), the main
hypothesis (A → B /∈ T ) and the full regularity and primeness of T .

(d) B ∈ T & B ∈ T ∗ (i.e., ¬B /∈ T ) by A10 (B → [¬B ∨ (A → B)]) and the fact that T is a prime
L-theory.

(II) For some wffs A and B, suppose A → B /∈ T ∗ (i.e., ¬(A → B) ∈ T ) as hypothesis. The
proof is similar to that of case (I). However, we have to prove different alternatives in each Lti-logic
(1 ≤ i ≤ 8) given the Definition of R (cf. Remark 3.2). A sketch of the proof is provided for each one
of the considered logics. In these proofs, some of the properties of T –named, that it is a fully regular
and prime L-theory (cf. Definitions 4.1-4.4)– along with some axioms of the Lti-logics are needed (cf.
Definition 2.7).

Lt1: We have to prove A ∈ T and B /∈ T ∗. By reductio, we get the following alternatives: (a) A /∈ T
or (b) B ∈ T ∗. Now, a contradiction is reached for each case using the main hypothesis (A → B /∈ T ∗)
and axioms A14 (A ∨ [¬(A → B) → A]) and A15 (¬B ∨ [¬(A → B) → ¬B]), respectively.

Lt2: We must prove (A ∈ T and B /∈ T ∗) or (A ∈ T ∗ and B /∈ T ∗) or (A ∈ T and B /∈ T ). By
reductio, we obtain eight different alternatives reducible to the following ones: (a) A /∈ T & A /∈ T ∗

or (b) A /∈ T & B ∈ T ∗ or (c) B ∈ T & B ∈ T ∗. From each alternative, we can get a contradiction by
means of A20 ([¬(A → B)∧¬A] → A), A21 (¬(A → B) → (A∨¬B)) and A22 ([¬(A → B)∧B] → ¬B),
respectively.

Lt3: We have to prove (A ∈ T and B /∈ T ∗) or (A ∈ T and B /∈ T ). By reductio, we have (a)
A ∈ T or (b) A /∈ T & B ∈ T ∗ or (c) B ∈ T ∗ & B ∈ T or (d) A /∈ T & B ∈ T . Then, a contradiction
follows from alternatives (a), (b) and (c) given the recently mentioned axioms A14, A21 and A22 and
the same can be said about alternative (d) given axiom A23 (B → [B ∧ ¬(A → B)] → A]).

Lt4: We must prove (A ∈ T and B /∈ T ∗) or (A ∈ T ∗ and B /∈ T ∗). By reductio, we face four
different alternatives: (a) A /∈ T & A /∈ T ∗ or (b) A /∈ T & B ∈ T ∗ or (c) B ∈ T ∗ & A /∈ T ∗ or (d)
B ∈ T ∗. Case (a) can be solved by A20 and cases (b), (c) and (d) by A15. [We could also use A21
instead of A15 in case (b)].

Lt5: In this case, A20 and A22 can be used. However, the proof for Lt5 is omitted here since is
already available in the literature (cf. [15]).

Lt6: We have to prove (A ∈ T and B /∈ T ∗) or (A ∈ T ∗ and B /∈ T ∗) or (A ∈ T ∗ and B /∈ T ). By
reductio, we obtain eight different alternatives reducible to three: the alternatives (a) and (c) in Lt2,
which can be solved likewise; and A /∈ T ∗ & B ∈ T ∗, for which we can use A28 ({[¬(A → B)∧¬A] →
¬B} ∨ ¬B).

Lt7: We must prove (A ∈ T and B /∈ T ∗) or (A ∈ T and B /∈ T ) or (A ∈ T ∗ and B /∈ T ). We
proceed similarly as before and obtain four alternatives from which we find a contradiction using one
of the following axioms: A20, A22 and A29 ({[¬(A → B) ∧B] → A} ∨A).

Lt8: What we have to prove in this case is (A ∈ T and B /∈ T ∗) or (A ∈ T ∗ and B /∈ T ). By
applying the same method, we face four different alternatives that can be solved by means of A20,
A22, A28 and A29 as in previous cases. ■
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We can now prove completeness of the Lti-logics. First, we show that the canonical Lti-model is
indeed an Lti-model.

Lemma 5.8 (The canonical Lti-model is an Lti-model) Let L be an Lti-logic, then the canonical
L-model is indeed an L-model.

Proof. On the one hand, we know that ∗C is an involution on KC (Corollary 5.5). On the other
hand, the ternary relation RC holds canonically in any L-model (Lemma 5.6). Finally, clauses (i)-(v)
hold canonically given Lemma 5.7. ■

Theorem 5.9 (Completeness of the Lti-logics) Let L be an Lti-logic (1 ≤ i ≤ 8). For any set
of wffs Γ and wff A, if Γ ⊨L A, then Γ ⊢L A.

Proof. We prove Theorem 5.9 by contraposition. Let L be an Lti-logic (1 ≤ i ≤ 8), then for some
set of wffs Γ and wff A, suppose Γ ⊬L A. By proposition 4.13, there is a fully regular prime L-theory
T such that Γ ⊆ T and A /∈ T . Then, the canonical L-model is defined upon T as in Definition 5.3
and by Lemma 5.8, the canonical L-model is indeed an L-model. Finally, Γ ⊭C A since T ⊨C Γ but
T ⊭C A. Therefore, Γ ⊭L A by Definition 3.5. ■

6 Conclusion

In [10], six different logics were developed as possible companions to the system BN4 and were studied
from the perspective of a bivalent Belnap-Dunn type semantics. These systems are the logics deter-
mined by the class of all implicative expansions of Belnap’s matrix MB4 verifying B while maintaining
the conditional structure of MBN4 or ME4.

In the present paper, we have offered a different perspective to deepen our knowledge of these logics.
In particular, these new systems –the Lti-logics–had been endowed with a 2 set-up ternary relational
semantics following the strategies applied to BN4 by Brady (cf. [6]). Thus, the research regarding the
companions to BN4 is now completed because we have already provided the very same semantic tools
(both a bivalent Belnap-Dunn type semantics and a 2 set-up ternary relational semantics 10) to analyse
these logics that Brady himself applied to study its system BN4. Finally, we may indeed claim –as
he hoped when that paper was published–that his method of proof is fairly general and other model
structures can be axiomatized by appropriate modifications to the proofs he provided ([6], p. 9).
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