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Abstract

Projects directed at a universal logic (notably, Brady’s [9]) have long struggled with para-
doxes. In just the domain of computability, Hilbert’s call for a general decision procedure
was scuttled by Turing, using a diagonal argument. Indeed, Turing’s halting problem can be
straightforwardly viewed as a paradox, of the same type as others like the Liar and Curry’s.
This is confirmed here by reconstructing a halting predicate in a sequent calculus setting,
thereby fitting a ‘recipe’ for paradox in [1]. The usual range of possible solutions then applies,
including especially substructural approaches. Bringing this work as a response to Brady’s
“Starting the Dismantling of Classical Mathematics” [12], then, we assess his proposals to drop
the law of excluded middle and other logical principles—asking whether this strategy avoids
all versions of the halting paradox. Brady has well begun, in his idiom, the re-construction of
mathematics; and there is more yet to do.

Dedication. Ross Brady has contributed a lifetime of insightful and careful research in logic,
especially to the programmes of relevant logic and set theory. His results on the non-triviality of
paraconsistent set theory remain among the most important landmarks in the field [7, 8, 15]. He
has shown inspiring commitment to pursuing a philosophically and technically satisfactory answer
to the deepest of questions. This paper is in grateful honor of his achievements.

1 Logic, Paradox, and Computability

In this note, we aim to get a better understanding of the logical structure of Turing’s halting

argument [38], cf. [12, p.293], and how to respond to it. We do this by drawing together some

ongoing discussions in non-classical logic in a single setting, as a way of (1) clarifying the halting

problem’s place among other diagonal arguments; (2) engaging with efforts by Brady and others in

a similar tradition to find a non-classical response to it; and so (3) opening up new paths forward

in non-classical computability theory.

1.1 Universality via non-classicality

Part of logic is identifying patterns—formal, abstract similarities between arguments, whereby we

can say that those fitting the ‘shape’ of e.g. modus ponens are valid. Insofar as Brady is right

that “logic is about provability” [12, p.288], these patterns serve as a guide, regardless of content

or context. The apotheosis of this exercise would be a universal logic, one that identifies patterns

that apply in all times and places, and “to the exclusion of other ... logics” [9, p.x].
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Universal logic projects infamously run into paradoxes, arguments which appear to fit patterns

of valid reasoning, with true premises, but which seem to end in unacceptable or impossible con-

clusions [9, pp.45-50]; cf. [40, chs. 0, 1]. If we do not want to give up on the idea of universality,

a bold response is to say that fewer of the canonized patterns are valid than classical logicians

have thought. Here we find programs like Routley / Sylvan’s [36], and maxims like “Gödel’s first

theorem would not be provable using a decent logic” [12, p.280, 296 (quoting Sylvan)]. Recently,

Brady has suggested that his logic of meaning containment MC (or DJ, which is MC without

distribution), which lacks ex contradictione quodlibet ECQ (and so is paraconsistent) and the law

of excluded middle LEM (and so is paracomplete), fits the bill [10, 11, 13].

Logicians have tried hard to show that the paradoxes themselves fit into patterns. Past attempts

to unify the paradoxes have been due to Russell (see [30, ch.9]), and Lawvere (see [43]), among

others (see [40, ch.2]). It has turned out to be very difficult to find a pattern or schema that all

the intuitively related paradoxes fit, without capturing too much, or conversely leaving something

intuitively related out. One trend in this direction has been to turn to proof theory, to view

paradoxical derivations in the context of a Gentzen-style sequent calculus; a recent attempt along

these lines to provide a recipe for self-referential paradoxes is due to Ahmad [1].1 If this sort of

schematizing were successful, it would be another step closer to universality.

In [12] Brady works through a number of related diagonal arguments in the foundations of

arithmetic and computability to prove MC’s worth, arguing that without LEM no paradox results.

Along with Cantor’s diagonal argument and Gödel’s first theorem, Brady includes Turing’s halting

problem. It seems to be widely accepted that the halting problem is a close relative of other

diagonal incompleteness arguments.2 If so, its classical impossibility could be overcome in the

same way that other paradoxes are, via non-classical logic, recasting what is computable and not.

In this note we will make the connection between halting and the other paradoxes overt by

presenting a two-place halting predicate that fits Ahmad’s paradox schema, vindicating Brady’s

inclusion of it. We will also then emphasize where excluded middle really is (or is not) needed

in a paradoxical derivation, which points in the direction of a substructural logic, not merely

paraconsistent or paracomplete. Brady’s work has taken us far, with farther still to go. We stand

on the shoulders of giants—but with universality, we are reaching for the vault of the sky.

1.2 Paradoxes and non-classical solutions

Once it was clear, circa 1900, that some ancient paradoxes were not merely puzzling but rather

dramatic blockages or even breakages in the foundations of logic itself, responses emerged. A

venerable response was to claim that some form of arguments are invalid—and that they would

be invalid even without the antinomies to prove it, e.g. as relevant logicians have long noticed,

A → (B → A) can’t always be correct without making a nonsense of ‘implies’. The idea that

correcting our logic would also address the non-logical paradoxes is very appealing; cf. [36].

For a long time, people taking this approach seemed to think that we could mostly focus on

1Ahmad motivates his recipe in part with detailed criticism of previous attempts to schematize the paradoxes,
especially the discussion in [39]; cf. [40, ch.2]. A key part of that debate is around the notion of explanation,
providing a pattern that is not merely applicable but enlightening [3]. We take Ahmad’s recipe to be a more neutral
and schematic way to say when paradoxical arguments are structurally similar, without entering in to a debate
about whether they are ‘really’ the same. E.g. the liar and the barber are the ‘same’ but one is a problem and the
other is not [30, p.277].

2Although for the record, in Turing’s original paper he says “what I shall prove is quite different from the
well-known results of Gödel” [38, p.259].
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dropping either one or both of ECQ or LEM, focusing our thinking on ‘gluts’ and ‘gaps’. Most

such approaches though have always struggled with Curry’s paradox, e.g. [27].3 This paradox

seems to force abjuring principles that otherwise don’t seem involved, like (operator) contraction,

(A → (A → B)) → (A → B). For while one can tell an epistemological story about the invalidity of

the law of excluded middle, for instance, or its non-inclusion in a logic of meaning containment, it

is harder to see why contraction should fail—and especially hard to walk away from its “deductive

equivalent” (A ∧ (A → B)) → B, called pseudo-modus ponens. Nevertheless, walk away from

contraction many, including Brady, did.4

This is where Brady’s work really flourishes. Famously, he takes up the highly natural principles

of naive set comprehension and extensionality, and shows how they can sit safely within a (weak)

relevant logic, paradoxes or no. His systems can permit inconsistencies, provably non-trivial for

the logic DKQ; but his considered view is that a consistent system based in the paracomplete logic

DJQ, and its even weaker cousin MC, are philosophically preferable. Across a series of papers he

shows for a variety of paradoxes that one can prove ‘strange loops’ of the form

B ↔ ¬B

but not outright contradictions

B ∧ ¬B

due to the absence of LEM.5 (In intuitionistic logic, one has the scheme A → ¬A ⊢ ¬A, and this

step is still valid, but Brady’s systems lack this reductio principle; and arguably this principle

seems to lose its motivation without LEM.) The role of LEM in diagonal arguments is observed

in Brady and Rush [16] about Cantor’s famous proofs.6 Brady paints a picture where, without

LEM, infinite sets call for reappraisal of Cantorian proofs; and, perhaps following intimations by

Meyer [26, 25], a properly formulated arithmetic may call for reappraisal of Gödel’s theorems. This

connects to work like [37], suggesting that computability theory and undecidability results (§2.1
below) may be challenged from a non-classical point of view.

Circa the early part of this century, apparently new ‘validity’ versions of the Curry paradox

surfaced [6]. While past non-classical solutions focus on logical operators, the new so-called ‘validity

curry’ or ‘V-curry’ involves a (two-place) validity predicate V (x, y) that seems only tractable on the

substructural level—that is, calling in to question not just principles involving logical connectives,

but structural rules or meta-inferences like cut and contraction7:

Γ ⊢ A ∆, A ⊢ B
Cut

Γ,∆ ⊢ B

Γ, A,A ⊢ B
CTR

Γ, A ⊢ B

Calling these rules into question has led eventually to a great deal of work on substructural

systems—which in turn, paradoxically, call in to question our very ability to characterize logic

itself [4, 24].

3See [40, ch.4] for a summary. In [32], Priest points out that Curry’s paradox and Löb’s theorem deploy essentially
the same argument; cf. [41].

4The justification for this can be linked on an independent basis to the depth relevance requirement. See
[17, 23, 34].

5Priest contends that some paradoxes are still derivable without LEM [31, p.25], but this is a matter of (to our
knowledge ongoing) debate with Brady ([14].

6In [16, ftnt 1], Brady notes discussions that led to this line of work.
7Here just given in single-conclusion forms; multiple-conclusion forms (with right-contraction, too) are used in

§2.3 below.
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In this context, it seems that certain principles and pieces of vocabulary—like a validity

predicate—are not admissible on Brady’s approach. This limitation is already recognized at length

in uses of very weak relevant logics like B for truth predicates—that on such setups, due to extended

Curry problems, validity is not definable [5, p.34]. While a few have notably maintained that V-

paradoxes are not genuinely worrisome [20], these are the state of the art in terms of paradoxes

any would-be universal non-classical logic needs to address.

As in Ahmad [1] (and citations therein), this literature tends to use Gentzen-style presentations

of logics, using sequent calculi. In contrast, Brady’s presentation of MC and related logics like DJ,

as well as systems for inconsistent mathematics used by Routley, Meyer, and Mortensen, tend to be

in Hilbert-style axiomatizations (though Brady does present a ‘Gentzenization’ of his systems in [9,

ch.3§2, cf. p.110], following Dunn’s similar treatment of relevant logic R in the 1970s). In this note,

we will make our presentation in terms of a standard sequent calculus, with the aim of connecting

the ideas in Brady’s analysis to other literature on substructural treatment of paradoxes, bringing

together two important lines of research.

Caveat: to be clear, we will not be claiming to have produced a problem for one system

(Brady’s axiomatic MC) by working in another system (a substructural Gentzen calculus), which

would be a non-sequitur. We are, as the title suggests, rather looking for an abstract picture of

the logic of Turing’s argument, and how various proposals—like Brady’s—fare, as a way forward

for non-classical computability theories. We return to this in §3 below.

1.3 A recipe and a plan

Following Brady’s inclusion of halting with the other diagonals, in §2.3 we show that the Halting

Problem is plausibly of the same sort as other paradoxes. This is by making it fit a ‘recipe’

abstracted from paradoxes like the Liar and Curry by Ahmad. In Ahmad’s analysis, the ingredients

for paradox are [1, p.267-8]:

• (Transparency). A predicate P that is transparent in the sense of obeying two rules:

⊢ A
⊢ P (⌜A⌝) P (⌜A⌝) ⊢ A

• (Negative Modality). An operator m that obeys the rule:

A ⊢
⊢ mA

where predicate P occurs in A.

• (Fixpoint). A sentence S that contains ‘P ’ and is equivalent to mS.

All the expected paradoxes (arguably) arise from this recipe. In §3 we consider the implications

for Brady’s project. Let us turn to halting.

2 The halting paradox

2.1 The problem revisited

Turing’s celebrated paper [38] is nowadays generally known as the genesis of modern computers

and computability theory. His main motivation, surprisingly perhaps, was not to accomplish the
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technological revolution that came after this publication. In fact, he was trying to solve a logi-

cal problem haunting the foundations of mathematics: Hilbert’s Entscheidungsproblem (decision

problem), which, generally speaking, asks whether there is a general procedure (nowadays called

an algorithm) that determines if some statement A is a theorem, i.e if A can be proved from a

given set of axioms (say, of arithmetic or geometry) through logical rules. Alas, Turing’s arguments

show that no such general procedure exists. This, together with Gödel’s incompleteness theorems,

was the end of Hilbert’s programme. Or so the story goes.8

In order to answer the Entscheidungsproblem, Turing had to come up with a mathematically

precise formulation of the concepts involved in Hilbert’s question, i.e. what it means to have

some regulated step-by-step calculating procedure that, after a finite amount of time, produces

a determinate result. This was the raison d’être of Turing machines. And once such a technical

framework was available, it was easy to show that there is no general procedure that determines

whether or not some statement is a theorem.

Turing’s ingenious way around the Entscheidungsproblem was to ask an equivalent question

he could phrase in terms of the computing machines framework he had designed: given that

some Turing machines halt and produce a definite output while some others loop forever, is there a

universal Turing machine that, given any other machine running on some fixed input, will determine

if that machine will halt or not? This question came to be known as the halting problem and Turing

answered it in the negative by showing that a contradiction follows if we assume such a universal

Turing machine exists. This in turn showed, by equivalence, that the Entscheidungsproblem had a

negative answer.

Both Turing and Church independently came to the same result. Computability theory has

ever since taught its students that there are limits to what one can compute. And this is indeed

so if we all play by the rules of classical logic. After almost a century since the results of Church

and Turing, non-classical logical research has bloomed spectacularly. Non-classical foundations of

mathematics are now something that logicians and mathematicians can explore in order to find

where the limits of classical foundations blur. So we may today by all means ask: what does

computability theory look like when resting on inconsistency-tolerant logical foundations? The

first step is reconsidering the linchpin argument about uncomputability.

2.2 The argument

There are many ways to present the halting problem and answer it in the negative through reductio

arguments. Let us consider the following version of the argument, one of the simplest ways to

establish the negative result.

Suppose that we have a halting program halt such that, for any program p and any input i,

halt(p, i) =

1 if p(i) ↓

0 if p(i) ↑

Here 1 and 0 mean “yes” and “no”, respectively. Intuitively, halt(p, i) = 1 means “program p halts

on input i” and halt(p, i) = 0 means “program p loops (does not halt) on input i”. Following

8The reader is cautioned that the argument given in this section and below is offered as a rational reconstruction
of a famous, almost folklore, proof (as found also in [12, p.293-294]). We do not claim to be doing textual historical
scholarship on Turing’s original paper. For that, see [21].
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computability theory conventional notation, p(i) ↓ means that the (partial) function p is defined

on the particular input i, i.e. that i is an element of the domain of p and thus p(i) is the unique

output obtained when p is applied to i; naturally, p(i) ↑ means the contrary, i.e. that p is undefined

on input i, so i is not an element of the domain of p and hence applying p to i does not produce

an output.9

We can use halt to construct a new “self-halt” program that answers positively when a given

program p will halt when we feed (some encoding of) itself as an input:

sh(p) =

1 if halt(p, p) = 1

↑ if halt(p, p) = 0

And, of course, we can also build the opposite “self-loop” program:

sl(p) =

1 if sh(p) ↑

↑ if sh(p) = 1

Here comes the paradox: does sl(sl) halt or loop? If sl(sl) ↓ then halt(sl, sl) = 1, so sh(sl) = 1,

whence sl(sl) ↑. On the other hand, if sl(sl) ↑ then halt(sl, sl) = 0, whence sh(sl) ↑, which in turn

implies that sl(sl) = 1, so it is not the case that sl(sl) ↑, i.e. sl(sl) ↓. Therefore sl(sl) ↓ iff sl(sl) ↑,
which by definition is sl ∈ dom(sl) iff sl /∈ dom(sl), from which the contradiction sl ∈ dom(sl) and

sl /∈ dom(sl) follows.10

Since our only assumption was the existence of halt and it led to a contradiction, classical

reasoning will have us conclude that a halting program cannot exist, on pain of triviality. This is

certainly so if one is committed to classical logic as the correct foundations of mathematics and,

in particular, of computability theory. Let us now look at the halting paradox more carefully,

logically speaking, so that we can isolate all its moving parts and consider ways to deal with it.

2.3 From halting to triviality

We give the halting paradox following the recipe from [1]. We work in a classical multiple con-

clusion sequent calculus, to see what principles are involved, without endorsing these principles or

attributing them to Brady. This include the left and right negation rules

Γ ⊢ A,∆
¬ L

Γ,¬A ⊢ ∆

Γ, A ⊢ ∆
¬ R

Γ ⊢ ¬A,∆

as well as the structural rules of contraction (CTR) and transitivity (Cut). We also assume

Exchange on the left and right, so Γ,∆ is the same as ∆,Γ.

With this negation satisfying Ahmad’s ‘negative modality’ (§1.3), what is needed is a halting

predicate that is transparent, and gives rise to a fixed point for negation. We define a two-place

predicate H that applies to natural numbers. The first parameter is a number encoding the

instructions to compute a function, and the second parameter is the number that the encoded

function takes as input. So if f is a function on the natural numbers, ⌜f⌝ is the code of the

instructions to compute f . One may use Turing’s description numbers for this purpose: given

9It is common to read f(x) ↓ as “program f halts on input x” and f(x) ↑ as “program f loops on input x”.
10Note again that A ↔ ¬A ⊣⊢ A ∧ ¬A is valid in classical and intuitionistic logic [12, p.297, footnote 4]. This is

a key moving part in Brady’s analysis.
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some Turing machine M that computes f , ⌜f⌝ is the description number obtained by reducing

each m-configuration in the table for M to some sequence of numbers according to the process

described in [38, §5]. Predicate H is to be understood as saying that x applied to y halts, or

halt(⌜x⌝, ⌜y⌝) = 1.

The informal considerations in §2.2 lead to the following.

H1
H(⌜x⌝, ⌜y⌝) ⊣⊢ x(⌜y⌝) ↓ H2¬H(⌜x⌝, ⌜y⌝) ⊣⊢ x(⌜y⌝) ↑

Γ, x(⌜x⌝) ↓ ⊢ ∆
SH1L

Γ, sh(⌜x⌝) = 1 ⊢ ∆

Γ ⊢ x(⌜x⌝) ↓, ∆
SH1R

Γ ⊢ sh(⌜x⌝) = 1, ∆

Γ, x(⌜x⌝) ↑ ⊢ ∆
SH2L

Γ, sh(⌜x⌝) ↑ ⊢ ∆

Γ ⊢ x(⌜x⌝) ↑, ∆
SH2R

Γ ⊢ sh(⌜x⌝) ↑, ∆

Γ, sh(⌜x⌝) = 1 ⊢ ∆
SL1L

Γ, sl(⌜x⌝) ↑ ⊢ ∆

Γ ⊢ sh(⌜x⌝) = 1, ∆
SL1R

Γ ⊢ sl(⌜x⌝) ↑, ∆

Γ, sh(⌜x⌝) ↑ ⊢ ∆
SL2L

Γ, sl(⌜x⌝) = 1 ⊢ ∆

Γ ⊢ sh(⌜x⌝) ↑, ∆
SL2R

Γ ⊢ sl(⌜x⌝) = 1, ∆

Auxiliary rules:

Γ, x(⌜y⌝) = 1 ⊢ ∆
DL

Γ, x(⌜y⌝) ↓ ⊢ ∆

Γ ⊢ x(⌜y⌝) = 1, ∆
DR

Γ ⊢ x(⌜y⌝) ↓, ∆

The only negation rule used with up/down arrows is:

Γ,¬x(⌜y⌝) ↓ ⊢ ∆
L¬ ↓

Γ, x(⌜y⌝) ↑ ⊢ ∆

The initial sequents H1 and H2 are really two axioms, one for each direction of ⊢ and ⊣. Note that

we could replace them with four rules, introducing on the right and left, e.g.

Γ ⊢ ¬H(x, y),∆

Γ ⊢ x(y) ↑,∆
Then all the proofs could proceed only from initial identity sequents. We present things this way,

first, because this emphasizes the role of assumptions about a putative halting function in the

original reductio-style arguments; and second, going this way also makes some cuts explicit in the

derivations below.

Some of these rules may be derivable from others—for example, H2 would follow from H1, using

more negation rules—but we list them all for the sake of explicitness, and on the grounds that

they can be justified by the informal considerations in §2.2.11 If desired, one could replace DL and

DR with a more general pair of one-way inference rules from f(a) = b to f(a) ↓ for any function

f and any natural numbers a, b.

All this in place, then,H(x, y) is our transparent predicate, and the Turing sentenceH(⌜sl⌝, ⌜sl⌝)

is the problematic fixpoint: H(⌜sl⌝, ⌜sl⌝) iff ¬H(⌜sl⌝, ⌜sl⌝).

Let ∆1 be the following derivation:12

11As with the informal argument in §2.2, strictly speaking sh is not needed, since sl can be defined directly
in terms of H. (Thanks to a referee for pointing this out.) However, the purpose here is to provide a rational
reconstruction of a paradox—an apparently acceptable argument that has apparently unacceptable consequences.
Skipping out the steps through sh and cutting directly to the contradiction through sl loses the intuitive pull of the
(informal) argument. Analagously, one could formulate a sorites paradox with a premise like “If two grains of sand
is not a heap, then 10, 000 grains of sand is not a heap”, i.e. by making the jumps quite large, but then there is no
sense of a ‘forced march’ and no sense of needing to explain what went wrong. The argument retains its plausibility
only through incremental changes. Intermediary steps are an integral part of the paradoxicality. See [40, ch.1§2].

12We are using ∆ for sets of formulas, and also subscripted ∆is for names of derivations. Context will disambiguate.
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H1
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓

¬R⊢ sl(⌜sl⌝) ↓,¬H(⌜sl⌝, ⌜sl⌝)
H2¬H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↑
Cut⊢ sl(⌜sl⌝) ↓, sl(⌜sl⌝) ↑

SH2R⊢ sl(⌜sl⌝) ↓, sh(⌜sl⌝) ↑
SL2R⊢ sl(⌜sl⌝) ↓, sl(⌜sl⌝) = 1
DR⊢ sl(⌜sl⌝) ↓, sl(⌜sl⌝) ↓

CTR⊢ sl(⌜sl⌝) ↓ H1
sl(⌜sl⌝) ↓ ⊢ H(⌜sl⌝, ⌜sl⌝)

Cut⊢ H(⌜sl⌝, ⌜sl⌝)

Let ∆2 be the following derivation:

H1
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓

¬L¬sl(⌜sl⌝) ↓, H(⌜sl⌝, ⌜sl⌝) ⊢
L¬ ↓

sl(⌜sl⌝) ↑, H(⌜sl⌝, ⌜sl⌝) ⊢
SH2L

sh(⌜sl⌝) ↑, H(⌜sl⌝, ⌜sl⌝) ⊢
SL2L

sl(⌜sl⌝) = 1, H(⌜sl⌝, ⌜sl⌝) ⊢
DL

sl(⌜sl⌝) ↓, H(⌜sl⌝, ⌜sl⌝) ⊢ H1
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓

Cut
H(⌜sl⌝, ⌜sl⌝), H(⌜sl⌝, ⌜sl⌝) ⊢

CTR
H(⌜sl⌝, ⌜sl⌝) ⊢

Then we can derive the empty sequent:

∆1

⊢ H(⌜sl⌝, ⌜sl⌝)
∆2

H(⌜sl⌝, ⌜sl⌝) ⊢
Cut⊢

Triviality.

The derivation of triviality does not overtly use LEM. If so, Brady’s denial of the LEM alone

does not immediately help here; but the negation rules do seem undercut without the LEM.13 More

fundamentally, Brady’s rejection of the earlier rule of explosion (¬-left) and use of a de Morgan

negation does the work in preventing collapse. This proof uses contraction and cut, but also the

negation rules before either of those.

2.4 From halting to inconsistency

The following is a derivation showing the Turing sentence is contradictory.

Let ∆3 be the following derivation:

H1
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓

SH1R
H(⌜sl⌝, ⌜sl⌝) ⊢ sh(⌜sl⌝) = 1

SL1R
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↑ H2

sl(⌜sl⌝) ↑ ⊢ ¬H(⌜sl⌝, ⌜sl⌝)
Cut

H(⌜sl⌝, ⌜sl⌝) ⊢ ¬H(⌜sl⌝, ⌜sl⌝)
→R⊢ H(⌜sl⌝, ⌜sl⌝) → ¬H(⌜sl⌝, ⌜sl⌝)

Let ∆4 be the following derivation:

13In [29], an unpublished note where Petersen explores the halting problem using his contraction-free logic, he
assumes ¬ ↑ and ¬ ↓ rules and also asks “does tertium non datur hold for ‘defined’?, i.e. {f}(f) ↓ ∨{f}(f) ↑?”. His
thought is that if LEM holds in such a way, he may be able to replace occurrences of contraction in the proof of the
unsolvability of the halting problem. However, he seems to conclude that no contraction-free proof of the diagonal
argument is available. See §3.5 below.
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H2¬H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↑
SH2R¬H(⌜sl⌝, ⌜sl⌝) ⊢ sh(⌜sl⌝) ↑
SL2R¬H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) = 1
DR¬H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓ H1

sl(⌜sl⌝) ↓ ⊢ H(⌜sl⌝, ⌜sl⌝)
Cut¬H(⌜sl⌝, ⌜sl⌝) ⊢ H(⌜sl⌝, ⌜sl⌝)

→R⊢ ¬H(⌜sl⌝, ⌜sl⌝) → H(⌜sl⌝, ⌜sl⌝)

Then:

∆3

⊢ H(⌜sl⌝, ⌜sl⌝) → ¬H(⌜sl⌝, ⌜sl⌝)
∆4

⊢ ¬H(⌜sl⌝, ⌜sl⌝) → H(⌜sl⌝, ⌜sl⌝)

⊢ H(⌜sl⌝, ⌜sl⌝) ↔ ¬H(⌜sl⌝, ⌜sl⌝)

⊢ H(⌜sl⌝, ⌜sl⌝) ∧ ¬H(⌜sl⌝, ⌜sl⌝)

Contradiction.

These derivations do not use the ¬-left or right rules. A → connective based on meaning

containment may not introduce as shown in these proofs (see §3) but we could stop ∆3 and ∆4

one line earlier and still get the two way problematic H(⌜sl⌝, ⌜sl⌝) ⊣⊢ ¬H(⌜sl⌝, ⌜sl⌝).

Thus these arguments could go through in Brady’s approach—that is, up to the last step, which

is not taken by Brady: we do not go from A ↔ ¬A to A∧¬A, because of the absence of the LEM.

So Brady has a solution at the last step to the inconsistent version of the paradox.

2.5 Triviality without negation?

Is there a de Morgan negation-free paradox derivation? This is where extended Curry-like para-

doxes have really shown their teeth. There is such a problem, if there is a two-place operator

or predicate C such that if ⊢ C(A,B) then A ⊢ B—which amounts to a way of moving A from

right to left. One clear candidate for such an operator is intuitionistic-like negation A → 0 = 1,

assuming that in Brady’s systems we have

Γ ⊢ A → B,∆

Γ, A ⊢ B,∆

This leads to possible trouble as follows.

Informal considerations suggest a modified rule (two way, in keeping with rules H1 and H2):

HSH
H(⌜sl⌝, ⌜sl⌝) ⊣⊢ sh(⌜sl⌝) ↑→ 0 = 1

We can argue for this rule as follows:

• Left-to-right, suppose H(⌜sl⌝, ⌜sl⌝). That is, halt(⌜sl⌝, ⌜sl⌝) = 1. If sh(⌜sl⌝) ↑ then

sl(⌜sl⌝) = 1, and then sl(⌜sl⌝) ↓, and then sh(⌜sl⌝) = 1, and then sl(⌜sl⌝) ↑, which by

definition implies halt(⌜sl⌝, ⌜sl⌝) = 0; whence 0 = 1 on hypothesis.

• For the right-to-left direction, this is motivated by the reductio rule, (A → 0 = 1) ⊢ ¬A, in

the following argument. (This argument instance could still be accepted without a general

commitment to the reductio rule or LEM; see §3.5 below.) Suppose sh(⌜sl⌝) ↑→ 0 = 1.

Since sl(⌜sl⌝) ↑ implies sh(⌜sl⌝) ↑ (by SH2R), it follows that sl(⌜sl⌝) ↑→ 0 = 1, which

means ¬sl(⌜sl⌝) ↑, i.e. sl(⌜sl⌝) ↓, whence H(⌜sl⌝, ⌜sl⌝).

With this rule, then let ∆5 be the following derivation:
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HSH
H(⌜sl⌝, ⌜sl⌝) ⊢ sh(⌜sl⌝) ↑→ 0 = 1

→L
sh(⌜sl⌝) ↑, H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

SL2L
sl(⌜sl⌝) = 1, H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

DL
sl(⌜sl⌝) ↓, H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

H1
H(⌜sl⌝, ⌜sl⌝) ⊢ sl(⌜sl⌝) ↓

Cut
H(⌜sl⌝, ⌜sl⌝), H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

CTR
H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

Now, we recall that ∆1 proved ⊢ H(⌜sl⌝, ⌜sl⌝); so we could put these together for

∆1

⊢ H(⌜sl⌝, ⌜sl⌝)
∆5

H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1
Cut⊢ 0 = 1

But since ∆1 uses negation, the conclusion is avoided, and this isn’t a worry for Brady.

The Turing sentence can be derived without any (de Morgan) negation, however. Here is ∆6:

HSH
H(⌜sl⌝, ⌜sl⌝) ⊢ sh(⌜sl⌝) ↑→ 0 = 1

→L
sh(⌜sl⌝) ↑, H(⌜sl⌝, ⌜sl⌝) ⊢ 0 = 1

H1
sl(⌜sl⌝) ↓ ⊢ H(⌜sl⌝, ⌜sl⌝)

Cut
sh(⌜sl⌝) ↑, sl(⌜sl⌝) ↓ ⊢ 0 = 1

SH1L
sh(⌜sl⌝) ↑, sh(⌜sl⌝) = 1 ⊢ 0 = 1

SL1L
sh(⌜sl⌝) ↑, sl(⌜sl⌝) ↑ ⊢ 0 = 1

SH2L
sh(⌜sl⌝) ↑, sh(⌜sl⌝) ↑ ⊢ 0 = 1

CTR
sh(⌜sl⌝) ↑ ⊢ 0 = 1

→R⊢ sh(⌜sl⌝) ↑→ 0 = 1
HSH and Cut⊢ H(⌜sl⌝, ⌜sl⌝)

Cut this together with ∆5 to get 0 = 1. There are similar alternative proofs, e.g. using →-

introduction twice and then operator contraction. Since operator contraction went off the table in

§1.2, these are left to the curious reader.

Now it seems we have a problematic derivation that does not use →-contraction, or LEM. Using

only arrow rules and structural contraction and cut we seem to prove 0 = 1. This is not quite the

empty sequent, but it does not seem good. In Brady’s arithmetic in MC [10], which is consistent,

0 = 1 is not on.

Why not? Some researchers in paraconsistent computability theory seem unsure, e.g. [37]; and

indeed there may be some (slim) room for considering the possibility that 0 = 1 is at least tolerable,

depending on the underlying paraconsistent arithmetic.14 But for Brady, the non-triviality of naive

set theory is established by showing that some ‘absurd’ sentences, like ∀x∀y(x ∈ y), are not satisfied

in a model of the theory. In Sylvan/Brady set theory, if 0 is defined in terms of such an absurd

sentence, and 1 is defined as {0}, then proving 0 = {0} must be ruled out to maintain coherence;

cf. [42].

Brady’s way out here can be denial of the → intro rule used at the end of ∆6. This is related

to the denial of operator contraction already, and the associated ‘pseudo’ modus ponens: →
elimination is a valid rule, but not a valid sentence-level axiom. We turn now to further analysis

on these derivations.

14A related functionality problem for inconsistent computability theory is raised in [18].
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3 Options, observations, and open questions

Having studied some derivations of halting, in conversation with Brady’s ideas, let us consider a

few questions this raises.

3.1 Options

The halting paradox follows the same pattern as other paradoxes.15 There are multiple ways to

address the halting paradox—and, more generally, the paradoxes covered by Ahmad’s recipe.

1. Restricting or abandoning Cut, as in [35].

2. Restricting or abandoning (structural) Contraction, as in [40] and [2].

3. Restricting or abandoning ¬L and ¬R.

Solutions 1 and 2 belong to the substructural approach to paradoxes. Solution 1 avoids uses of cut

associated with H1 and H2, and the last step in the derivation in §2.3. Brady’s logics are trending

toward Solution 2: they do not include operator contraction.

Dropping cut, one can maintain all the classical rules for logical operators, and avoid debate

about whether to restrict e.g. negation. Keeping cut, we’ve seen that if enough care is taken with

connectives—restricting negation rules, denying →-introduction unrestrictedly—then it is possible

to defuse the derivations given above.

3.2 Multiple vs single conclusions

One thing to clear away is a question of how much depends on the particular presentation of a

logic, e.g. a single versus a multiple conclusion Gentzen approach. Given a fixed point B ⊣⊢ ¬B,

the latter comes to grief very quickly:

B ⊢ ¬B
⊢ ¬B,¬B
⊢ ¬B

¬B ⊢ B
¬B,¬B ⊢
¬B ⊢

⊢
An opponent of exhaustion and exclusion would deny both sides of this. But we can give a

derivation that does not require multiple conclusions:

∆2

H(⌜sl⌝, ⌜sl⌝) ⊢
¬R ⊢ ¬H(⌜sl⌝, ⌜sl⌝)

H2 and Cut ⊢ sl(⌜sl⌝) ↑
SH2R ⊢ sh(⌜sl⌝) ↑
SL2R ⊢ sl(⌜sl⌝) = 1
DR ⊢ sl(⌜sl⌝) ↓

H1 and Cut ⊢ H(⌜sl⌝, ⌜sl⌝)
∆2

H(⌜sl⌝, ⌜sl⌝) ⊢
Cut ⊢

15In [43], it is shown that the existence of non-recursively enumerable languages follows from Lawvere’s paradox
schema, as does the unsolvability of the halting problem, and many other paradoxes. Other important results from
computability theory fall into this pattern, like the fact that there is an oracle B such that the class of all problems
that can be solved with deterministic oracle Turing machines in polynomial time consulting B is different from the
class of all problems that can be solved with nondeterministic oracle Turing machines in polynomial time consulting
B. Thanks to Luis Estrada-González for pointing this out.
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Here there is no contraction at any step (though we have the same proof used twice16). So similar

issues arise in single-conclusion settings.

3.3 Negation and contraction

Turning from this to the issues of LEM and contraction, what is the relationship between Solution

2 and Solution 3? One may argue that, if we take an non-contractive substructural approach, this

implies a paranormal (i.e. non-exclusive, non-exhaustive) approach. This is due to contraction

being used in the following derivation of the LEM:

A ⊢ A ∨R
A ⊢ A ∨ ¬A ¬R⊢ ¬A,A ∨ ¬A

∨R⊢ A ∨ ¬A,A ∨ ¬A
CTR⊢ A ∨ ¬A

The last step is by contraction; see [28, p.25], where this derivation is given to illustrate the

“intuitionistic objection” as a reason for dropping contraction.17 Without contraction, there is no

commitment to LEM unless it is there already. One can then further argue that Brady is right:

without LEM, there are no outright contradictions of the form A ∧ ¬A, just circular anomalies of

the form A ↔ ¬A.

If one is aiming for paraconsistency (as Brady and other ‘universalists’ in this tradition do), and

keeps the Cut rule, and one admits pieces of vocabulary like a halting predicate, then restricting

contraction is not enough. In particular, if we expect inconsistent information along the lines of

§2.4, it seems to us the negation-left rule (from ⊢ A to ¬A ⊢) is very much like ECQ and to be

dropped. In [9, p.134] Brady indeed only adopts de Morgan principles for the Gentenization of his

logic. Logics in this vicinity are well-prepared for paradox—as long as the paradoxical predicates

do not covertly reintroduce some banished behaviour.

3.4 Conditionals

Indeed, we may ask: how much depends on a conditional operator → and its rules, versus focusing

on structural properties of ⊢? On Brady’s approach, modus ponens is a valid rule, but is deductively

equivalent to contraction if stated as an axiom—hence (A ∧ (A → B)) → B is ‘pseudo’ modus

ponens. Some apparently true things, like about validity, cannot be expressed within the system

(including some about the system itself). Extended validity predicates would be inadmissible for

logics like MC.

For the record, an alternative proposal is something like Priest’s LP, where modus ponens

(for the material conditional) can be stated as an axiom, but is not a valid rule: one may have

⊢ A ⊃ B without A ⊢ B. So, much as a paranormal approach (with cut) cannot have both

¬-L and ¬-R rules, similarly an approach with structural contraction seems unable to have both

conditional-introduction and conditional-elimination rules unrestrictedly.

Again, as in §2.5, the issue really seems to be some C such that ⊢ C(A,B) iff A ⊢ B. Abstractly,

the form of a dangerously paradoxical object G is not in terms of connectives at all, but in moving

16This extends the question of ‘contracting on theorems’—which seems acceptable, if subtle [40, p.142]—to con-
tracting on whole proofs. The issue warrants further study for serious non-contractivists.

17Also note that the disjunction rules used in the derivation of LEM are not Ketonen-style, otherwise contraction
would not be used. See [28, pp.11-14].
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back and forth across the turnstile unchanged: ⊢ G iff G ⊢. This suggests—as many have suggested

[19, ch.2, cf. p.207-8]—that analysis at the level of negation and even implication is not the full

story and calls for substructural work.

3.5 0 = 1 and the addition of classical sentences

Similarly, and as hinted in §2.5, a problem not addressed by any would-be paraconsistent-cum-

universal system is what lies beneath the negation inconsistency of halting. Suppose we accept

something like H(⌜sl⌝, ⌜sl⌝) ↔ ¬H(⌜sl⌝, ⌜sl⌝) or even H(⌜sl⌝, ⌜sl⌝) ∧ ¬H(⌜sl⌝, ⌜sl⌝). What does

it mean? It means that there is some g such that

halt(g, g) = 1 ↔ halt(g, g) = 0

or even

halt(g, g) = 1 ∧ halt(g, g) = 0

The latter would imply the (apparently catastrophic) 0 = 1, assuming transitivity of =. This might

seem like a point in Brady’s favor: drop LEM. But then, halt does not even seem well-defined to

begin with, since it presumes in the background that there are only two possible cases to consider.18

Now, most people who reject the general validity of LEM still accept that many instances of

it are correct; it is just not always correct. Brady endorses the addition of what he calls ‘classical’

sentences that do satisfy instances of LEM [9, §1.7, p.42]. Could the sentences involved in defining

and reasoning about halting be classical in this way? It would be question begging to say no

because otherwise one reaches inconsistency. What Brady says is (where his D(D) is our diagonal

sl(⌜sl⌝)):

LEM should be supported through one of its disjuncts, D(D) halts or D(D) moves

the cursor to the right. Neither of these have the required support as they would both

need some recursive deductive process for the argument to their respective conclusions

to take shape and this has not been established, especially in light of the classical

undecidability results [12, p.294].

It is a question for further discussion whether this is enough justification for failure of LEM, or

whether it falls back on an assumption of classical reductio ad contradictionem as definitive. Would

the special cases of some ‘negation’ rules for functions over the natural numbers, like

Γ ⊢ x(y) ↓,∆
Γ, x(y) ↑ ⊢ ∆

Γ, x(y) ↓ ⊢ ∆

Γ ⊢ x(y) ↑,∆

Γ ⊢ x(y) ↑,∆
Γ, x(y) ↓ ⊢ ∆

Γ, x(y) ↑ ⊢ ∆

Γ ⊢ x(y) ↓,∆

be reasonable, even if LEM is not? (Cf. footnote 13 above about [29].) With these, a completely

connective-free derivation of triviality is possible, using only structural rules (cf. §3.4 above). Even

more specifically, if there were a plausible recursive deductive process that made LEM apply to

halting (as is argued by [37]), it would return the question posed in §2.4: what does it mean to

halt and not halt? The prospects for an inconsistent approach remain mostly undeveloped. Time

will tell.

18Cf. discussion of the role of classicality in the meaning of functions and their calculability in [22, p.5].
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3.6 Simple and Absolute Consistency

Finally, we can ask a few questions about the shape of Brady’s preferred system.

With respect to paradoxes, the upshot is to accept ‘loops’ of the form B ↔ ¬B but not incon-

sistencies of the form B ∧¬B, whence Brady can prove the simple consistency of his systems. One

question, then, is: if there are in fact no contradictions in the offing, why is the logic also para-

consistent at all? Or put another way, if absolute consistency (non-triviality) is already available,

what is gained by avoiding contradiction?

Brady could reply that paraconsistency is there just as a result of logical relevance. Indeed,

on relevantist grounds, inferring an arbitrary proposition from a contradiction is bad reasoning

due to the lack of content being shared between antecedent and consequent. Thus, the failure of

ECQ need not mean that the logic will encounter contradictory theorems from which non-trivial

consequences may follow, but only that ECQ cannot be valid since the entailment and implication

relations are relevant. That these features are key when it comes to dissolving paradoxes and

avoiding limitative results was already advanced by Routley in [36], who, unlike Brady, allowed

contradictions in e.g. set theory.

A second question concerns the meaning of the loops we are meant to accept so sanguinely.

While not outright inconsistent, they are still odd, and point to the underlying motivations for

this project. If we seek to reconstruct arithmetic and computability theory on this basis, but are

somehow freed of Turing’s halting ‘paradox’, one may worry that a looping proto-inconsistency

that never halts is not a significant change from the classical situation.

4 Conclusion

Turing’s halting paradox fits a familiar diagonal pattern, calling attention to logical principles

involving negation and contraction. As ever, a universalist—especially one intending to develop a

non-standard computability theory—looks for what principles are essential to problematic deriva-

tions. Dropping a principle that is used in some derivations but not others is only a very partial

solution, at best. Dropping a principle that is used in all derivations but also is needed for appar-

ently innocuous arguments that cannot be made without it is an overly-total solution, at worst.

Balance is needed.

A universal logic, if one exists, seems to require being weak. Brady has long included ‘meta-

rules’ (following Meyer) in his axiomatizations [12, p.282], giving a kind of hybrid Hilbert system

with axioms, rules, and what could be structural rules. Making some alterations to the structural

rules seems to us still within the constraints and motivation for a logic of meaning containment.

Whether halting is more like the liar (treatable with de Morgan negation) or Curry (treatable with

more drastic constraints on contraction)—or whether the distinction is irrelevant (as in [1] and

many other places)—both components seem worth considering.

In a venerable tradition of non-classical mathematics, Brady has begun the bold dismantling

of the classical edifice. He has guarded admirably against some difficult paradoxes by challenging

various negation and implication rules. With others, he has shown how a weakened logic could

tread where classicality cannot—with further yet to go. And so: could Hilbert’s decision problem

be solved in the affirmative after all? We must know; but will we? The universal logic project has

come a long way. It remains open what is next.
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