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Abstract

The class of the logics free from paradoxes of relevance determined by all
natural implicative expansions of Kleene’s strong 3-valued matrix with two
designated values is defined. These logics are free from paradoxes of rele-
vance in the sense that they have the “variable sharing property”. They have
“natural conditionals” in the sense that the function defining them coincides
with the classical function when restricted to the “classical values”, satis-
fies Modus Ponens and, finally, assigns a designated value to a conditional
whenever its antecedent and its consequence are assigned the same value.
These logics are defined by using a “two-valued” overdetermined Belnap-
Dunn semantics. Thus, the interpretation of the three values is crystalline.
The logics here introduced enjoy the properties customarily demanded of
many-valued implicative logics except, of course, the satisfaction of the rule
“Verum ex quodlibet”

Keywords: Paradoxes of relevance; variable sharing property; natural condi-
tionals; two-valued overdetermined Belnap-Dunn semantics; 3-valued logics.

1 Introduction

Since at least ten years ago, I have worked with José M. Méndez on topics defined
by Ross T. Brady such as the “depth relevance condition” or the 4-valued logic
BN4. It is an honor to present a paper in this special issue. Here, I define a
Hilbert-style formulation for all 3-valued expansions of Kleene’s strong logic with
the variable sharing property. I use the method Ross T. Brady defined in [7].
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Although I know that now he is not very fond of finite matrix semantics, I hope
that he can see something valuable in my paper.

A propositional logic L has the variable sharing property (VSP) if in all L-
theorems of implication form antecedent and consequent share at least a propo-
sitional variable. Given that in propositional logic the non-logical content is con-
veyed by propositional variables, if L is a propositional logic with the VSP, then it
is free from “paradoxes of relevance” in the sense that L does not contain theorems
of implication form where the semantical content of antecedent and consequent is
disjoint. Anderson and Belnap consider the VSP a necessary property a relevant
logic has to fulfill (cf. [1]), but some authors go so far as to consider that “the
concept of relevant logic is coextensional with that of having the variable sharing
property” (cf. [16, p. 28]).

The present paper investigates some properties of the elements of a certain
class to be defined below, whose members are 3-valued logics with the VSP. We
will use the term Li-logics (Li-logic) to refer to the logics in this class as a whole.
But let us generally discuss the question of 3-valued logics and the VSP.

In algebraic and many-valued logic, the conditional (or “implication” as it was
named in [36, pp. 227, ff.]) is traditionally required to meet the following strong
condition c0: a — b=t iff a < b, where < is the lattice order and t is the greatest
element in the set of logical values, no other designated elements being considered
in this set (cf., e.g., [36, p. 227] or [20, p. 179, ff.]). It results from the condition
c0 that an implicative logic is defined as follows.

Definition 1.1 (Implicative logics). A logic is implicative if it fulfills the ensuing
conditions for any wffs A, B, C (cf. [20, pp. 179-180]; [35, p. 89]; [36, p, 228)):

cl. A—- A Reflexivity
2. A—- B,A=B Modus Ponens
c3. A=B— A Veq
c4. A-B,B—-C=A—-C Transitivity
c5. A+ B = C[A] + C[A/B] Replacement

(Cf. Definition 2.1 on the logical language used in the paper; Veq abbreviates
“Verum ex quodlibet” —“A true proposition follows from any proposition”—;
C[A4] is a wif in which A appears; C[A/B] is the result of substituting in C[A] A
by B in one or more places where A occurs; Ay, ..., A, = B means “if Ay, ..., A,,
then B”.)

Wojcicki remarks “the set of conditions imposed on implicative logic can be
treated as a set of minimal requirements that an adequate notion of implication
has to satisfy” ([36, p. 227]). And he adds: “no logic that satisfies the Relevance
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Principle is an implicative logic nor involves the implication connective character-
istic of such logics” ([36, pp. 227-228]; by the Relevance Principle, Wéjcicki refers
to the VSP): Veq provides an infinity of wifs violating the VSP, the simplest of
which is ¢ — (p — p), for distinct propositional variables p, q.

In this context, Tomova’s notion of a “natural conditional” (cf. [33]) can be
viewed as an attempt at extending the class of implicative logics worthy of the
name beyond the restrictive limits imposed by condition c0. Now, let MK3y;
(resp., MK3;) be Kleene’s strong 3-valued matrix with two (resp., only one) des-
ignated values (cf. [14, §6.4]; Definition 2.2 below), a conditional is natural if the
following three conditions are fulfilled (cf. Remark 2.5 below): (1) It coincides
with the classical conditional when restricted to the “classical values” T and F
(2) it satisfies Modus Ponens; and (3) it is assigned a designated value whenever
the value assigned to its antecedent is less than or equal to the value assigned to
its consequent. It is clear that these conditions leave open the possibility of having
more than one designated value, whence the class of implicative logics is consid-
erably extended if the term “ implicative” is understood according to Tomova’s
definition of a natural conditional instead of Definition 1.1, based on condition cO0.

In [33], Tomova studies the lattice of the 30 natural implicative expansions of
Kleene’s strong 3-valued matrix (cf. Definition 2.2), 24 of these expanding MK3,
while the remaining 6 are expansions of MK3;. The logics determined by these 30
matrices are given Hilbert-style formulations in [26, 31], and it has to be remarked
that, in addition to Lukasiewicz’s L3, there are important logics among them such
as the paraconsistent logic G35 (cf. [25]) and Pac (cf. [13]and references therein),
the quasi-relevant logic RM3 (cf. [22] and references therein) or the intermediate
logic with strong negation named “ the logic of the three-element algebra” in [15].
Nevertheless, only four of these 30 logics are implicative logics in the sense of
Definition 1.1: L3, the aforementioned logic G3§ and the logics dubbed Lt3 and
Lt6 in [31]. The remaining 26 logics either lack Veq or else Replacement (the rule
A+ B= B+ A fails).

But turning to the VSP, in [27, Appendix I11], it is proved that none of the said
30 logics enjoys this property: (A A —A) — (B V —=B), the thesis form of the rule
named “safety” in [10, p. 14], is a theorem of each one of them. Consequently, in
the quoted paper [27], it is proposed to widen the class of natural implicative logics
by modifying Tomova’s definition: conditions cl and c2 are maintained but con-
dition ¢3 is replaced by ¢3’: a conditional is assigned a designated value whenever
its antecedent and its consequent are assigned the same value (cf. Definition 2.4
below). It develops that, according to the modified definition of a natural condi-
tional just given, there are exactly 108 natural implicative expansions of Kleene’s
strong 3-valued matrix, one half of them expands MK3;, and the other half, MK3;
(cf. [27]). Of these, in said paper [27], it is proved that just the 11 ones described
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in Definition 2.6 below determine logics with the VSP. However, after providing
the tables defining them, these 11 logics are not discussed there any further. Next,
in [30], it is shown that they are functionally equivalent. Concerning this question,
let me then note just one point. In [27], it is proved that all natural implicative
expansions of MK3; are functionally equivalent to each other. Among these 54
expansions there are very well known logics such as L3 or G3j, (the positive frag-
ment of G3 with Lukasiewicz-type negation) (cf., e.g., [13]). But also logics with
lesser usual conditionals such as, for instance, the one defined in the ensuing table

— |0 1 2
02 0 2
110 20
2 10 0 2

Surely, we are not willing to discard, say, L3 in favor of the logic just defined.
In this sense, I do not think that the fact that the 11 aforementioned logics are
functionally equivalent makes 10 of them dispensable in favor of the remaining one.
Thus, the aim of this paper is to particularize each one of these logics. Especially,
the aim of this paper is to give Hilbert-type formulations to the 11 Li-logics with
the VSP and to highlight some interesting properties the Li-logics have, besides
the VSP.

The Hilbert-style formulations presented below are defined by using a Belnap-
Dunn “two-valued” semantics (BD-semantics), in particular, an overdetermined
BD-semantics (o-semantics), characterized by the possibility of assigning truth,
falsity or both truth and falsity to the formulas of a formal language. The idea
is to simply translate the matrix semantics into an o-semantics and then prove
completeness w.r.t. the o-semantics leaning upon a canonical model construction,
whereas soundness is easily proved w.r.t. the matrix semantics. This strategy
is based upon Brady’s paper [7] as displayed in [26, 31]. Besides simplifying the
soundness and completeness proofs, this strategy has the more important advan-
tage of providing the logics it is applied to with a clear interpretation in terms of
overdetermined models (we note that BD-semantics is not limited to the interpre-
tation of logics with a Lukasiewicz-type negation: cf., e.g., [21]).

The introduction is ended with a remark. Then, we explain the structure of
the paper. It is known that there are infinitely-many logics with the VSP (cf.
[11]). Moreover, some many-valued logics with the VSP can be found in the
literature. For instance, the logic determined by Belnap’s eight-element matrix
M (cf. [4]), axiomatized in [8]; for instance, the logic determined by Meyer’s six-
element Crystal lattice CL, also axiomatized in [8]. But it does not seem possible
to interpret in an intuitive clear way the meaning of the logical values in these
matrices. However, the meaning of the three values in the implicative expansions
of MK3 introduced in the present paper is crystalline, since, as commented upon
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above, the matrix semantics is given equivalent BD-semantics, in particular, an o-
semantics, whence the logical values can be interpreted as falsity (0), truth (2) and
both truth and falsity (1). This fact together with the properties Li-logics enjoy,
some of which have been remarked above, make of them, we think, interesting tools
in contexts where relevance, paraconsistency and decidability are needed (notice
that the more important relevant logics such as T, E and R are undecidable (cf.
[34]).

The paper is organized as follows. In §2, all natural implicative expansions of
MK3 determining logics with the VSP are defined. These logics (Li-logics) are
formulated in the most general and unified way we have been capable of devising.
But we remark that, as exemplified in the appendix, there are more simple and
conspicuous ways of axiomatizing them if generality is dropped as a requisite.
Also, some proof-theoretic properties of the Li-logics are highlighted in this second
section of the paper. In §3, Belnap-Dunn semantics (BD-semantics) is provided for
each one of the Li-logics and the soundness theorems is proved. In §4, completeness
proofs are given by leaning on a canonical modal construction. As remarked above,
we follow the strategy in [32] as applied in [7] and particularly displayed in [26] and
[31]. We also note some remarkable properties of the Li-logics. In §5, we point out
some concluding remarks on the results obtained and, finally, in the appendix, we
prove some facts about the Li-logics claimed in some way or another throughout
the paper.

2 Natural implicative expansions of MK3 determining logics
with the variable sharing property

In this section, all natural 3-valued implicative expansions of Kleene’s strong 3-
valued matrix MK3 determining logics with the VSP are defined. We begin by
defining MK3 and the notion of a natural conditional.

Definition 2.1 (Some preliminary notions). The propositional language consists
of a denumerable set of propositional variables pg, p1, ..., Pn, .., and some or all
of the following connectives — (conditional), A (conjunction), V (disjunction), —
(negation). The biconditional («+) and the set of wifs are defined in the custom-
ary way. A, B etc. are metalinguistic variables. Then, logics are formulated as
Hilbert-type axiomatic systems, the notions of “theorem” and “proof from a set
of premises” being the usual ones, while the following notions are understood in a
fairly standard sense (cf., e.g., [27] or [29]): “extension” and “expansion” of a given
logic; “logical matrix” M and “M-interpretation”, “M-consequence”, “M-validity”
and, finally, “M-determined” logic.

Kleene’s strong matrix MK3 can be defined as follows (cf. [14, §64]).
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Definition 2.2 (Kleene'’s strong 3-valued matrix). The propositional language
consists of the connectives A, V,—. Kleene’s strong 3-valued matrix, MK3 (our
label), is the structure (V, D, F) where (1) V = {0,1,2} with 0 < 1 < 2; (2)
D ={1,2}; (3) F ={fn, fv, f-} where f, and f, are defined as the glb (or lattice
meet) and the lub (or lattice joint), respectively, and f- is an involution with
f-(2) =0, fo(0) = 2 and f-(1) = 1. We display the tables for A, V and —:

AlO 1 2 v]|0o 12 =0
0/[0 00 0[0 12 0]2
1jo1 1 1112 1|1
210 12 2|22 2 2|0

Remark 2.3 (On designated values in MK3). Kleene does not seem to have
considered designated values in [14, §64]. We use 2,0 and 1 instead of t,§ and u,
respectively, used by Kleene. The former have been chosen in order to use the
tester in [12], in case one is needed. Also, to put in connection the results in the
present paper with previous work by us. (As remarked in the precedent section, by
MK3; —resp., MK3;1—, we refer to MK3 with only one —resp., both— designated
value(s).)

On the other hand, we set:

Definition 2.4 (Natural conditionals). Let V and D be defined as in Definition 2.2.
Then, an f_,-function on V defines a natural conditional if the following conditions
are satisfied:

1. f., coincides with (the f_,-function for) the classical conditional when re-
stricted to the subset {0,2} of V.

2. f., satisfies Modus Ponens, that is, for any a,b € V,ifa - b€ Danda € D,
then b € D.

3. Forany a,beV,a—be Difa=0.

Remark 2.5 (Natural conditionals in Tomova’s original paper). We note that
natural conditionals are defined in [33] exactly as in Definition 2.4 except for
condition (3), which reads there as follows: for any a,b € V,a — b€ D if a <b.

Definition 2.6 (Natural 3-valued logics with the VSP). In [27, Appendix III,
Proposition C.9] (cf. Proposition 4.9), it is proved that the only natural implicative
expansions of MK3 determining logics with the VSP are the ones built up with
the conditional described by the following truth tables:
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— 0 1 2 — |10 1 2 — |10 1 2
012 0 2 0l2 0 2 012 0 2
D Tlo 10 ® 1lg 11 ® 191 9
2910 0 2 210 0 2 210 0 2
Slo 1 2 S0 1 2 Slo 1 2
012 0 2 02 0 2 02 1 2
) 31010 ® 11010 O 1091
2olo 1 2 2l0 2 2 210 0 2
— 0 1 2 — |10 1 2 — |10 1 2
02 1 2 0l2 1 2 012 2 3
G Tlo 10 ® 11010 @ 1]9 1 ¢
910 1 2 210 2 2 210 0 2
=0 1 2 =0 1 2
02 2 2 02 2 2
(t10) 119 1 o MU 719 1 ¢
2olo 1 2 2900 2 2

By Mi we refer to the implicative expansion of MK3y; (cf. Remark 2.3) built
up by adding the —-function described by table ti; by Lz, we refer to the logic
determined by Mi (1 < i < 11). Finally, we will use the term Li-logics (Li-logic)
to generally refer to these eleven logics. Next, the Li-logics are defined, but firstly
a common logic contained in each one of them, the logic b3, is presented (the
label b? is intended to abbreviate ‘basic logic contained in all natural implicative
expansions of MK3 with the VSP’).

Definition 2.7 (The basic logic b®). The logic b? is axiomatized with the following
axioms, rules of inference and metarule (A4, ..., A, = B means “if Ay, ..., A,, then
B”):
Axioms:

al. A—> A

a2. (AANB) <« (BANA)

a3. [AN(BAC)] < [(AANB)AC]

ad. ([AVB)AN(AVC)| < [AV(BAC))

ab. 7(AV B) <> (mAA-B)

ab. A+ ——A

a7. AV -A

Australasian Journal of Logic (22:5) 2025, Article no. 9



621

Rules of inference:

Adjunction (Adj): A,B= AAB
Modus Ponens (MP): A - B, A= B
Elimination of conjunction (EA): AANB = A, B
Introduction of disjunction (IV): A= AV B,BV A
)

(
Conditioned introduction of conjunction (CIN): A - B,A — C =

A— (BANC)
Elimination of disjunction (EV): A - C,B — C =
AVB—=C
Transitivity of <» (Trans <»): A<+ B,B <> C =
A= C
Prefixing w.r.t. <> (Pref3): A< B= (C — A) +
(C — B)
Suffixing w.r.t. < (Suf<>): A< B=(A—C) +
(B—C)
Factor w.rt. <» (Facs»): A< B= (CANA) <
(C' A B)

Contraposition w.r.t. <> (Con»): A< B = -B + -4
Metarule:
Metarule: If A, B= C then DVA, DV B=DVC

In what follows, we prove some theorems and rules of b3.

Proposition 2.8 (Some theorems and rules of b?). The following are provable in
b*: (T1) (A« B) +> (B <+ A); (T2) A+ B = -A < —-B; (T3) (AV B) +
—(mAAN-B); (T4) (AVB) < (BVA); (T5) A<> B= (ANC) < (BANC); (T6)
A< B= (CVA)« (CVB); (T7) A<~ B= (AVC) + (BVC) (T2 is Con'<;
T5 is Fad<s; T6 is Summation w.r.t. <> (Sum<>) and T7 is Sum/< ).

Proof. T1: a2, Definition of <». T2: T1, Con<». T3: a5, a6, Con+> and Trans<>.
T4: a2, T3, Con<» and Trans<>. T5: Fac<> and a2. T6: Fac<», Con<», T3 and
Trans<. T7: T4 and T6. O

Proposition 2.9 (Replacement). Let Eb® be an extension of b*. For any wffs
A, B, A < B =C([A] < C[A/B], where ClA] is a wff in which A appears and
ClA/B] is the result of substituting A by B in C[A] in one or more places where
A occurs.
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Proof. Induction on the length of C[A] by using Trans<», Fac<», Fac'<» (T5),
Sum< (T6), Sum’<> (T7), Pref<», Suf<», Con’<> (T2) and Con<. Let us prove
one of the cases as a way of an example. Suppose C[A] is D — E and let C[A/B]
be D' — E'. Then, (by induction) we have (1) D <» D" and (2) E <> E'. By
1 and Suf<, we get (3) (D' — FE) < (D — E); and by 2 and Pref<», (4)
(D' — E) <> (D' — E'). Finally, (5) (D — E) <> (D' — E’) is obtained by 3, 4
and Trans<. O

Proposition 2.10 (More theorems of b*). The following are provable in b*: (T8)
(A A B) g —|(—|A vV —|B); (Tg) —|(A A B) e (—|A V —|B); (T]O) [A V (B V C)] <
(AVB)VC|; (T11) [AN(BVC)] < [(ANB)V (ANC)).

Proof. We use “Replacement” (Rep). T8: ab, a6. T9: T8, Con«», a6. T10: a3,
Con<>, T9, a6. T11: a4, Con<», ab, T3, T9, ab. H

Next, the Li-logics are defined. As remarked above, it will be proved that the
logic Li is determined by the matrix Mi (1 < i < 11).

Definition 2.11 (The Li-logics). The Li-logics (1 < i < 11) are axiomatized by
adding to b3 the following axioms and/or rules:
L1:

Al. (AVB)V (A— B)

A2. (Av-B)V (A — B)

A3. (—|A\/—|B)\/<A—> B)

A4 [[AN-A)N(BA-B)]— (A— B)
A5. [-(A— B)AN(mAN-B)] = (AV B)
A6. [-(A— B)AN(mAAB)] = (AV-B)
A7. [-(A—= B)A(AAB)] = (mAV -B)
Rl1. A— B,-B=-A

R2. A— B, AN-A=-B

R3. A—- B, BAN—-B= A

R4. BA—-B = —(A — B)

R5. AN-A= —(A— B)

R6. AN—-B = —-(A— B)

L2: A1, A5, A6, A7, R1, R3, R4, R5, R6 and
A8. =BV (A — B)
A9. [(AN-A)AB] — (A — B)
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L3: Al, A5, A8, A9, R1, R3, R4, R6 and
A10. [<(A — B)AB] — —B
L4: A1, A2, A5, A6, A7, R2, R3, R4, R5, R6 and

R7. BA-B,A= A— B
R8. B= -AV (A — B)

L5: Al, A2, A5, A6, R2, R3, R5, R7, RS and

R9. B/\—|B,—|A:>—|(A%B)
R10. AA-B = BV (A — B)
R11. =(A — B),B = —A

L6: A3, A5, A6, A7, R1, R2, R4, R5, R6 and

All. AV (A — B)
R12. BA-B,-A= A — B

L7: A5, A6, A7, All, R2, R4, R5, R6, RS and
R13. BA-B= A — B

L8: A5, A6, All, R2, R5, R8, R9, R10, R11 and R13.
L9: A3, A7, All, R1, R2, R5, R6, R12 and

Al2. (A= B)AN-Al— A

L10: A7, A11, A12, R2, R5, R6, R8 and R13.
L11: A11, A12, R2, R5, R8, R10, R11 and R13.

3 Belnap-Dunn semantics for the Li-logics

Let T represent truth and F represent falsity. Belnap-Dunn semantics (BD-
semantics) is characterized by the possibility of assigning 7', F', both T and F
or neither 7" nor F to the formulas of a given logical language (cf. [5, 6, 9, 10]).
Concerning 3-valued logics, two variants of BD-semantics, overdetermined BD-
semantics (o-semantics) and underdetermined BD-semantics (u-semantics) can be
considered. Formulas can be assigned 7', F' or both T" and F' in the former; T', F' or
neither 7" nor F in the latter (cf. [26, 31]). U-semantics is especially adequate to 3-
valued logics determined by matrices with only one designated value; o-semantics,
for those determined by matrices where only one value is not designated.
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Given an implicative expansion of MK3, M, with 1 and 2 as designated values,
the idea for defining an o-semantics, M,, equivalent to the matrix semantics based
upon M is simple: a wif A is assigned both T and F' in M, iff A is assigned 1 in
M. Next, A is assigned T' (resp., F) in M, iff it is not assigned 0 (resp., 2) in M.
(Notice that, unlike in u-semantics, interpretation of formulas cannot be empty in
o-semantics. )

The o-semantics equivalent to the matrix semantics based upon each one of
the 11 matrices introduced above have been defined by translating said matrices
into an o-semantics according to the simple intuitive ideas just exposed.

In the what follows, the notion of an Li-model and the accompanying notions
of Li-consequence and Li-validity are defined. For each i (1 <i < 11), Li-models
and said accompanying notions constitute an o-semantics (which will be referred
to by Li-semantics) equivalent to the one based upon the matrix M; in the sense
explained above. It will be proved that the logic Lz is sound and complete w.r.t.
Li-models (1 <14 < 11). We begin by defining the general notion of an Eb3-model
(models for extensions of the basic logic b3).

Definition 3.1 (Eb*-models). An Eb3-model is a structure (K, I) where (i) K =
{{T},{F},{T,F}}, and (ii) I is an Eb%-interpretation from the set of all wifs
to K, this notion being defined according to the following conditions for each
propositional variable p and wifs A, B: (1) I(p) € K; (2a) T € I(—A) iff F € I(A);
(2b) F e I(-A) Mt T € I(A); Ba) T €e (AANB) it T € I(A) & T € I(B);
(3b) F e I[AANB)iff F € I(A)or F € I(B); (4a) T € I(AV B) iff T € I(A)
or T € I(B); (4b) F € I[AVB)ift F € I(A) & F € I(B). There are five
possibilities for assigning 7" to conditionals:

(5al) T € I(A — B)iff [T ¢ I(A) & T ¢ I(B)] or [T ¢ I(A) & F ¢ I(B)]
or [T e (A& Fel(A)&Tel(B)&FelB)or|FéIlA&F ¢
1(B)).

(522) T € I(A — B) if F ¢ I(B) or [T ¢ I(A)&T ¢ I(B) or [T €
I(A) & F e I(A) & T € I(B)].

(5a3) T € I(A — B)iff [T ¢ I(A) & T ¢ I(B)] or [T ¢ I(A) & F ¢ I(B)] or
[T eI(A)&Tel(B) & Fel(B)or|F¢Il(A)&T e I(B)

(
(5ad) T € I(A — B)iff T ¢ I(A) or [F € I(A) & T € I(B) & F € I(B)] or
[F' ¢ I(A) & F ¢ I(B)].

(5a5) T € I(A — B) it T ¢ I(A) or [T € I(B)& F € I(B)] or [F ¢
I(A) & T € I(B)).

There are also five possibilities for assigning F' to conditionals:
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(5b1) F € I(A— B)iff [T € I(B) & F € I(B)] or [T € I(A) & F € I(A)] or
[T € I(A) & F € I(B)].

(5b2) F e I(A— B)iff [T € I(B) & F € I(B)] or [T € I(A) & F € I(B)).

(5b3) F € I(A — B) iff [F € [(A)&T € I(B)&F € I(B)] or [T €
I(A) & F € I(A)] or [T € I(A) & T ¢ I(B)).

(5b4) F € I(A — B) iff [T € I(A) & F € I(A)] or [T € I(A)] & F € I(B)).
(5bb) Fel(A—=B)iff [ Tel(A) & Fel(A)]or [T el(A)]&T¢I1(B).
Then, Li-models (1 <i < 11) are defined as follows.

Definition 3.2 (Li-models). For each i (1 <4 < 11), an Li-model is an Eb3-model
with the following clauses for the conditional:

L1-models:
L2-models:
L3-models:
L4-models:

L5-models:

L7-models:
L8-models:
L9-models:
L10-models:

(5al) and (5b1)
(5a2) and (5b1)
(5a2) and (5b2)
(5a3) and (5b1)
(5a3) and (5b3)
L6-models: (5a4) and (5b1).
(5a5) and (5b1)
(5a5) and (5b3)
(5a4) and (5b4)
(5a5) and (5b4)
L1l-models: (5ab) (5b5)
Definition 3.3 (Li-consequence, Li-validity). Let M be an Li-model (1 < ¢ < 11).
For any set of wffs I' and wif A, T"Fy; A (A is a consequence of I' in the Li-model
M) iff T € I(A) whenever T' € I(I"). Then, I' Fr; A (A is a consequence of I' in
Li-semantics) iff I' Fy A for each Li-model M [T € I(T") iff VA € T(T € I(A)); F €
I(I) iff 3A € T'(F € I(A))]. In particular, Fr; A (A is valid in Li-semantics) iff
Fu A for each Li-model M (i.e., iff T € I(A) for each Li-model M). (By Fr; we
shall refer to the relation just defined.)
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Now, given the 11 matrices defined in Definition 2.6 together with Definition 3.2
and Definitions 2.1 and 3.3, we easily have:

Proposition 3.4 (Coextensiveness of Fy;; and Fr;). For any i (1 <1 < 11), set
of wifs I' and wff A, T By A iff U Fr; A. In particular, Ey; A iff B A.

Proof. Cf., e.g., the proof of Proposition 7.4 in [26]. ]

The proof of Proposition 3.4 is nothing but a mere formalization of the intuitive
translation (commented upon above) of a semantics based upon the matrix Mi into
the o-semantics formed by Li-models and the annexed notions of Li-consequence
and Le-validity. Nevertheless, Proposition 3.4 greatly simplifies the soundness and
completeness proofs, since we can focus on the relation Fyy; in the former case, while
restricting our attention to the relation Fy; in the latter one. Thus, let us prove
soundness of the Li-logics w.r.t. the matrix semantics based upon the matrices M
(1 <4 < 11). Then, soundness w.r.t. Li-semantics follows by Proposition 3.4.

Theorem 3.5 (Soundness of the Li-logics). For any i (1 <i < 11), set of wffs I’
and wff A, if T'tp; A then (1) T Epy A and (2) T Ep; A.

Proof. (1) Given a particular logic Li and an Mi-interpretation I, it is easy to
check the following facts: (a) Let R be a rule of Li. If I assigns a designated value
to the premises of R, then its conclusion is also assigned a designated value. (b)
Regarding the metarule, let I(DV A) = I(DV B) = 1or 2 but I(DVC) =0
for different wifs A, B, C, D. Then, it is clear that C is not an Mi-consequence of
A, B (i.e., A, B = C is falsified). (c) I assigns 1 or 2 to each one of the axioms of
Li (in case a tester is needed the one in [12] can be used). (2) It is immediate by
(1) and Proposition 3.4. O

4 Extension and primeness lemmas. Canonical models. Com-
pleteness

In this section the completeness of the Li-logics is proved by leaning upon a canon-
ical model construction, We begin by defining the notion of an Eb®-theory and the
classes of Eb®-theories of interest in the present paper (by EL, we refer to an
extension or an expansion, as the case may be, of the logic L).

Definition 4.1 (Some preliminary notions). Let L be an Eb3-logic. An L-theory is
a set of wifs closed under Adj, L-entailment (L-ent), all the rules and the metarule
of b3 and all the rules of L (A theory t is closed under L-ent iff whenever A — B
is a theorem of L and A € ¢, then B € t). Then, an Eb3-theory ¢ is regular iff it
contains all L-theorems; it is prime it AV B € t, then A € t or B € t, and, finally,
it is complete if for every wit A, A € t or = A € .

Australasian Journal of Logic (22:5) 2025, Article no. 9



627

Next, we sketch the framework of the completeness proofs.

A canonical Li-model is a structure (K, I;) where K is defined as in Defini-
tion 3.1 and [; is a t-interpretation built upon a prime, regular and complete
Li-theory. A t-interpretation is a function from the set of all wifs to K defined as
follows: for each wit A, T' € I,(A) iff A € t, and F € I,(A) iff -A € t. Canon-
ical Li-models are shown Li-models by proving that [, fulfills the corresponding
conditions in Definition 3.2. For instance, in the case of L4, we have to prove
that the function I; built upon the L4-theory t satisfies conditions (1), (2a), (2b),
(3a), (3b), (4a), (4b), (5a3) and (5bl). Once canonical Li-models shown L-models,
completeness is proved as follows. Let L be an Li-logic. Suppose that I' is a set
of wifs and A is a wff such that I ¥;, A. Then, A does not belong to the set of
consequences derivable in L from I' (in symbols, A ¢ CnI'[L]). Now, the regular
L-theory CnI'[L] is extended to a prime (hence, complete) theory ¢ such that A ¢ t.
Then, ¢ generates a t-interpretation I; such that 7' € I,(I') (since T' € L,CnI'[L]:
CnI'[L] C t) but T ¢ I;(A), whence A does not follow from I' in the canonical
L-model, so I' ¥y, A.

Thus, in order to prove completeness, we need to prove: (a) every Li-theory
without a given wif can be extended to a prime theory without said wff; (b) every
canonical Li-model is in fact an Li-model.

Facts (a) and (b) are proved in what follows. Once these facts are proved, we
think we are entitled to state the following theorem, where (2) follows from (1) by
Proposition 3.4.

Theorem 4.2 (Completeness of the Li-logics). For any i (1 <i < 11), set of wffs
U and wff A, (1) if T Ep A, then T bp; A; (2) if T Eyy A, then T g A,

So, let us proceed to the proof of facts (a) and (b).

As noted in the introduction to the paper, the completeness proofs we present
follow the strategy set up in [32], as applied in [7], and particularly displayed in
[26, 31]. According to this strategy, fact (a) can then be proved by using the notion
of a “maximal set” as defined upon that of “disjunctive derivability” (disjunctive
Eb3derivability in the present case). In this sense, the proof can proceed similarly
as, e.g., in [31, Section 6], since, as remarked there, the proof works for any logic
including Anderson and Belnap’s First Degree Entailment Logic, FDE. But each
Li-logic contains FDE, as shown in the appendix (Proposition A.2). Concerning
fact (b), the strategy exemplified in e.g., [26, 31] will also be used, but we need to
be more specific about the details in this case. Firstly, Proposition 4.3 is proved.
This proposition guarantees that the canonical interpretation of conjunction, dis-
junction and negation works in any Eb?-logic.

Proposition 4.3 (Some properties of prime, regular Eb3-theories). Let L be an
Eb*-logic and t be a prime, reqular L-theory. Then, for any wffs A, B, (1) ANB €t
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iff Actand Bet; (2) ~(ANB)etiff -Actor-Bet; (3) AVBetiff
AetorBet; (4) "(AVvB)etiff -Actand -Bet; (5) Actiff —Aect;
(6) Actor-Act.

Proof. (1) By EA and Adj. (2) By Iv, T9 and primeness. (3) By IV and primeness.
(4) By EA, Adj and a5. (5) By a6. (6) By a7 and primeness. (Notice that primeness
is not needed in (1), (4) and (5), while regularity is only required in case (6).) O

In what follows, we proceed to the more laborious task of proving that the
Li-canonical interpretation of the conditional also holds. In the first place, 5 basic
extensions of b? are defined. These extensions are used to prove the fundamental
properties of the conditional in prime, regular and complete theories built upon
the Li-logics.

Definition 4.4 (Five basic extensions of b®. I). The logic b} (1 < i < 5) is an
extension of b® with the following axioms and rules (these axioms and rules are
taken from Definition 2.11):
b3:
Al. (AVB)V(A— B)
A2. (Av-B)V (A — B)
A3. (—\A V-B)V (A — B)
A4, [(AN=-A)AN(BAN-B)]— (A— B)
R1. A— B,-B=-A
R2. A— B,AN—-A= —-B
R3. A—- B,BN-B= A

b3: A1, R1, R3 and

A8. =BV (A—> B)
A9. (AN-A)AB] — (A— B)

bl Al, A2, R2, R3 and

R7. BA-B,A= A— B
R8. B= -AV (A — B)

b3: A3, R1, R2 and

A1l AV (A = B)
R12. B/\ﬂB,—!A:>A—>B

b3: Al1, R2, R8 and
R13. BA—-B=A— B
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We prove:

Proposition 4.5 (The conditional in prime regular Eb?-theories). Let L be an
Eb-theory where b3 (1 <1 <5) will refer in each case to one of the extensions of
b displayed in Definition 4.4. And let t be a prime, reqular L-theory. We have
the following properties Pi (1 <i<5):

P1 (Eb3-logics): A — B € tiff [A ¢ t& B ¢ t] or [A ¢ t& —B ¢ t] or
Act&~Act& Bet&—Bet]or[~Adt&-B¢i.

P2 (Eb3-logics): A— Betiff-Bg¢tor[A¢t& B¢gtlor[Act&-Ac
t& B et

P3 (Eb3-logics): A — B € t iff [A ¢ t& B ¢ t] or [A ¢ t&—B ¢ t] or
[Act& Bet& -Bet]or[mA¢t& Bet.

P4 (Eb3-logics): A — B €t iff A¢ t or[-A€t&Bet&—-Bet]or
[~A¢t& B¢t

P5 (Eb3-logics): A— BetiffA¢tor[Bet& ~Bet]or[mA¢t& BEet].

Proof. Eb3-logics. (a) Suppose (1) A — B € t, and, for reductio, (2) [A € ¢ or
Bet] & [Actor-Bet] & [A¢tor-Ad¢torBé¢tor-B¢t] & [HAet
or =B € t]. There are 32 subcases to consider. The first 16 are the following:

1. Act& Act& A¢t&-Act.
2. Act& Act&~A¢t&-Act.
3. Act& Act& Begt&-Act.
4. Act& Aect& -Bé¢t&-Act.
5. Act& Act& A¢t& -Bet.
6. Act& Act& -A¢t&-Bet.
7. Act& Act& B¢t& -Bet.
8. Act& Act&k -B¢t&-Bet.
9. Act& Bet& A¢t& -Act.
10. Act&-Bet&-~A¢t& -~Act.
11. Act& ~-Bet& B¢t&-Act.
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12. Act& -Bet&-B¢t&-Act.
13. Act& -Bet& A¢t& -Bet.
4 Act&-~Bet&k-~A¢t&-Bet.
15, Aet&-Bet& B¢t&-Bet.
16. Act& -Bet&-B¢t&-Bet.

Now, subcases 1, 2, 5, 8, 9, 10, 12, 13 and 16 are impossible, since each one of
them contains a contradiction; subcases 3, 7, 11 and 15 are also impossible, since
they contravene MP. So, we are left with subcases 4, 6 and 14, which are proved as
follows: subcase 4, by R2; and subcases 6 and 14, by R1. Let us prove, for example,
subcase 4. By the hypothesis (1) and Adj, we have (A — B), (AA—A) € t, whence,
by R2, =B € t follows, contradicting 4.

Concerning the remaining 16 subcases, they are exactly as 1-16 above, except
that A € t (the first member in each conjunction) is replaced by B € t¢. Let us
name 1’-18 these remaining 18 subcases. Then, 1’, 2’ 3', 5, 7, &, 10/, 11’, 12/,
15" and 16’ contain a contradiction. Next, subcases 6’ and 14" are proved by R1;
subcase 4/, by R2 and finally, subcases 9" and 13', by R3.

(b) Suppose (1) A¢t & Bé¢tor(2) A¢t&-Bé¢tor(3) Act&-Aec
t& Bet& -Betor (4) "A¢t& B¢t Then A— B €t follows by Al, A2,
A4 and A3, respectively. Consider, for example, (2). By A2 and regularity of t,
we have (AV =B)V (A — B) € t, whence, by primeness of ¢, we get A — B € t.

The proof for the rest of the Eb-logics is similar. It is remarkable that the
L-theory t needs not be complete or consistent in any sense of the term. (Anyway,
notice that prime and regular Eb3-theories are complete by a7.) O

In what follows, 5 more basic extensions of b® are defined. Similarly as it
has been the case with b1-b5 and the fundamental properties of the conditional
just proved, the new extensions are used to prove essential properties of negated
conditionals in prime, regular and (now also) complete theories built upon the
Li-logics.

Definition 4.6 (Five basic extensions of b3. II). The logic b? (6 <14 < 10) is an
extension of b? with the following axioms and rules (these axioms and rules are
taken from Definition 2.11):
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A5. [+(A— B)A(mAAN-B)] = (AV B)
A6. [-(A— B)AN(-mAAB)]— (AV-B)
A7. [+(A— B)A(AAB)] = (mAV —B)
R4. BA-B = —(A — B)
R5. AN-A= -(A— B)
R6. AN-B = (A — B)

b3: A5, R4, R6 and
A10. [+(A— B)AB] — —-B
b3: A5, A6, R5 and

R9. BA-B,~A= —(A— B)
R10. AAN—=B = BV =(A— B)
R1l. =(A— B),B= -A

b3: A7, R5, R6 and

Al2. (A= B)AN-Al— A
b3, A12, R5, R10 and R11.
We prove:

Proposition 4.7 (The conditional in prime regular and complete Eb3-theories).
Let L be an Eb3-logic where b} (6 < i < 10) will refer in each case to one of the
extensions of b> displayed in Definition 4.6. And let t be a prime, reqular and
complete L-theory. We have the following properties Pi (6 <i < 10):

P6 (Eb}-logics): =(A — B) et iff [ Bet&-Bet]or[Act&-Aect] or
[Aet & -Bet].

P7 (Eb3-logics): =(A— B) et iff [ Bet& -Bet]or|[Aet& —Bet.

P8 (Eb3-logics): =(A — B) € t iff [FA € t& B € t&-B € t] or [A €
t& —Aectjor[Act& B ¢t

P9 (Eb3-logics): =(A — B) et iff[Act& -Act]or[Act& —-Bet.
P10 (Eb3y-logics): ~(A — B) et iff[Act& -Act]or[Act& B¢t
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Proof. Eb3-logics. (a) Suppose (1) (A — B) € t, and, for reductio, (2) [B ¢ t
or " B¢gtj&[A¢tor-A¢gtj&[A ¢ tor B ¢t]. There are 8 subcases to

consider:

1. B¢t& Ad¢t& Adt.
2. B¢t& Ad¢t& ~Bét.
3. B¢t&~Adt& Adt.
4. Be¢t&-A¢t&-Bét
5. Bdt& A¢t& Adt.
6. Bet& Adt& -A¢t.
7. -Bét& -Adt& Adt.
8. Bd¢t&-A¢t&-Bét

Now, subcases 2, 3, 4, 6 and 7 are impossible, since they contradict the fact
that ¢ is complete: so, we are left with subcases 1, 5 and 8, which are proved by A5,
A6 and A7, respectively. Let us prove, for instance, subcase 1. By completeness
of t, we have =A € t and =B € t, which together with the hypothesis (1) (=(A —
B) € t) and A5 give us AV B € t, whence by primeness, A € t or B € t follows,
contradicting 1.

(b) Suppose (1) Bet& ~-Betor(2) Act& -Actor(3) Act& -Bet.
Then —(A — B) €t follows by R4, R5 and R6, respectively.

The proof for the rest of the Eb-logics (7 <4 < 10) is similar. O

Now, given Propositions 4.5 and 4.7, we have the following fact concerning the
Li-logics.

Proposition 4.8 (The conditional in prime, regular, complete Li-theories). By Li
(1 <i < 11), we refer to the extensions of b in Definition 2.11; by Pi (1 <i < 10),
to the properties in Propositions 4.5 and 4.7. Now, let t be a prime, regqular and
complete Li-theory. We have:

1. t is an L1-theory: t has P1 and Pé6.
2. t is an L2-theory: t has P2 and P6.
3. t is an L3-theory: t has P2 and P7.
4. t is an Lj-theory: t has P3 and P6.
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t is an L5-theory: t has P3 and PS.
t is an L6-theory: t has P4 and P6.
t s an L7-theory: t has P5 and P6.

t is an L8-theory: t has P5 and PS.

A S S

t is an L9-theory: t has P4 and P9.
10. t is an L10-theory: t has P5 and P9.

11. t 1s an L11-theory: t has P5 and P10.

Proof. Immediate from Propositions 4.5 and 4.7. Take, for instance, case 7: it
follows from the fact that L7 is an Eb3-logic and an Eb}-logic. The rest of the
cases is proved similarly. O]

From Proposition 4.8, it follows immediately that the canonical interpretation
of the Li-conditionals holds. For instance, consider L2. The L2-conditional is
interpreted (cf. Definition 3.1) according to clauses 5a2, i.e., T' € I(A — B) iff
F¢IB)or [T ¢I(A)&T ¢ I(B)or[Tel(A)&Fe€l(A)&T e I(B)] and
5bl, ie., Fe I(A— B)iff [TeIB)&F e€lI(B)or|[TellA)&F eclI(A)
or [T € I(A) & F € I(B)]. Well then, if ¢ is a prime, regular and complete L2-
theory, it follows from Proposition 4.8 that ¢ has P2, i.e., A - Be tiff -B ¢t
or [ A¢t& B¢tlor[Aect&-Act& B et]andP6, ie, 7(A — B) e tiff
[Bet& -Betjor[Act& ~Actjor[Act& -Bet].

The section is ended by noting some properties of the Li-logics:

1. Weak implicative logics: we know that replacement is a property of each
Li-logic (cf. Proposition 2.9). Now, let £ € {1,2,3,5,6,8,9,10,11}. Lk
fulfills all properties required of implicative logics in, e.g., [20] or [36], except,
of course, that of having the rule Veq (cf. Definition 1.1; L4 and L7 are
excluded, since they lack the rule transitivity). Could we then say that they
are weak implicative logics, that is, logics with conditions (c1), (¢2), (c4) and
(c5) but without ¢(3)? (Cf. Definition 1.1.)

2. Strong and expressive logics: along section 2, it has been shown that, from
a syntactical point of view, the Li-logics are strong logics. In addition, they
have considerable expressive power (cf. [30]) For example, classical possitive
logic is definable in each one of them (cf. [30, Proposition 3.13]).

3. Variable sharing property:
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Proposition 4.9 (The Li-logics have the VSP). Let L be an Li-logic. Then
L has the VSP.

Proof. (a) Let L be any Li-logic except L2 or L3 and let ML be the im-
plicative expansion of MK3 determining L. Suppose that there are wifs A, B
such that A — B is an L-theorem but A and B do not share propositional
variables. Let I be an ML-interpretation assigning 1 (resp., 0) to each propo-
sitional variable in A (resp., B). Then I(A) =1 and I(B) € {0, 2} since {1}
and {0,2} are closed under —, A,V and —. Consequently, (A — B) = 0
whence A — B is not an L-theorem by soundness (cf. Theorem 3.5). (b)
Let L be L2 or L3. The proof is similar to that of case (a) by using now the
fact that f(0,1) = f,(2,1) = 0. O

4. Paraconsistency:

Proposition 4.10 (The Li-logics are paraconsistent). Let L be an Li-logic.
Then, the rule ECQ (i.e., AN —-A = B) fails in L.

Proof. Let ML be the implicative expansion of MK3 determining L, and [
be an ML-interpretation such that for distinct propositional variables p, q,
I(p) =1and I(q) =0. Then, I(p A —p) =1 but I(q) = 0. O

5. Comparison with other relevant logics: it is remarkable that, although all Li-
logics contain Anderson and Belnap’s First Degree Entailment Logic FDE,
none of them contains Routley and Meyer’s basic logic B (cf. Proposition A.2
in the appendix). Nevertheless, no Li-logic is contained in strong logics such
as RM3 (the 3-valued extension of the semi-relevant logic R-Mingle) or the
6-valued relevant logic CL (the logic determined by Meyer’s Crystal lattice
CL —cf. Proposition A.4, in the appendix.) Therefore, none of the Li-logics
is contained in Anderson and Belnap’s logic of relevant implication R.

6. On the H-formulations of the Li-logics: the Li-logics have been axiomatized
in a general and unified way, but they can be given simpler axiomatiza-
tions. For instance, L1 is alternatively axiomatized in Proposition A.5 in
the appendix. (Moreover, we note that some of the rules R1-R13 can be
strengthened to the corresponding thesis form; also, that some of the Li-
logics contain relatively strong rules, for instance, the rules Suffixing and
Prefixing —cf. Al in the appendix— are valid in L1 and L7. These facts
can be used to provide simpler formulations of the Li-logics.)
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7. On the axioms and rules of the Li-logics: let us now take a look at the axioms
and rules of the Li-logics. Those of b? are reasonable enough: the axioms and
rules of b? are clearly provable in the basic logic B. Moreover, the metarule
is a rule of “disjunctive B”, BY (cf., e.g., [8]). But concerning A1-A12 and
R1-R13, the situation is entirely different. For example, only R1 (the rule
Modus Tollens), R6 and R10, from the list A1-A12, R1-R13, are provable in
the logic of relevant implication R. And nevertheless the items in said list
are not freak axioms and rule schemes. Actually, they are weakenings of
well known, if debatable, axioms and rules. In particular, we have: A4, A9,
R2, R3, R4, R5, R7, R9, R12 and R13 are related to the “Ex contradictione
quodlibet” (ECQ) axiom, (A A =A) — B; Al and A2 are related to the
disjunctive Peirce’s law A11l, AV (A — B); A3, A8 and R8 to the “Verum
ex quodlibet” (VEQ) axiom, A — (B — A); A5, A6, A7, A10, A12 and
R11 to =(A — B) — (A A —B); R6 and R10 to (A A -B) - =(A — B),
and finally, R1 is the rule “Modus Tollens”. Anyway, some of the schemes
characteristic of the Li-logics are named “minglish axioms” in [32] because
of their relationship with the “mingle axiom”, A — (A — A), and in fact,
a few are provable in CL. and RM3. For instance, A1l through A12, R1, R4,
R6, R9, R10 and R12 are provable in RM3.

5 Concluding remarks

1. In this paper, we have axiomatized all logics with the VSP determined by
natural implicative expansions of Kleene’s strong 3-valued matrix either with
only one (MK3;) or with two designated values (MK3y). We hope that these
logics be useful in contexts when relevance paraconsistency and decidability
are required. There are other 3-valued logics with the VSP determined by
implicative expansions of MK3yy, but these fail to be natural in the generous
sense of Definition 2.4 (cf. [29, Proposition 7.12]).

2. Moreover, consider two interesting alternatives to Lukasiewicz-type negation,
i.e., Godel-type negation (G-negation), and dual Gédel-type negation (dG-
negation), which in 3-valued logic can be given as follows (cf. [28, 23] and
the references in these items):

: 012 : 0|2
G-negation 1o dG-negation 19
210 210

Let MK3g (resp., MK34¢) be the result of replacing Lukasiewicz-type nega-
tion in MK3y (resp., MK3yp) by G-negation (resp., dG-negation). Then, there
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are no implicative expansions with the VSP of neither MK3g nor MK34q:
for distinct propositional variables p, ¢, use the wff =(p — p) — —(¢ — q)
(resp., =(p vV =p) = —(g A —q)) in case of MK3¢ (resp., MK34q).

3. The 3-valued logics with the VSP we have defined (the Li-logics) fulfill all
conditions required of implicative logics in, e.g., [20] or [36], except, of course,
that of having the rule VEQ (cf. the introduction to the paper).

4. It is known that there are infinitely many logics with the VSP (cf. [11]).
Moreover there are, for instance, strong 6-valued or 8-valued logics with
the VSP (cf. the introduction to the paper). However, the truth-values
these logics are interpreted with are not easy to elucidate intuitively. In
contrast, the 3 truth-values used to interpret the Li-logics are transparent,
most of all as rendered by BD-semantics. Additionally, the Li-conditional
(or Li-implication) is clearly interpretable from an intuitive point of view: it
translates that of a weak implicative logic with the supplementary property
of having the VSP (cf. items 1 and 3 at the end of the preceding section).

5. As shown above, the Li-logics have interesting properties besides the VSP
such as paraconsistency or Wojcicki and Rasiowa conditions (except Veq).

6. Also, in the appendix, it is shown that the Li-logics maintain peculiar rela-
tions to standard relevance logics: none of them includes such a weak logic
as Routley and Meyer’s basic logic B but, on the other hand, the sometimes
referred to as the strongest logic in the relevance logic family, i.e., RM3 (cf.
[22] and references therein) does not include any of the Li-logics.

7. As explained in §2, we have tried to axiomatize the Li-logics in a general and
unified way. Nevertheless, these logics admit more simple and conspicuous
axiomatizations. In the appendix, an example is provided in the case of L1.
The rest of the Li-logics can be more simply axiomatized, in a similar way.

8. Finally, we note that the Li-logics could perhaps be given cut-free Gentzen-
systems (resp., natural deduction formulations) following the methods in
2, 3] (resp., [18]). Concerning the comparison between these methods, cf.
(19, §8] and [24, §6].
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A Appendix. Some additional facts about the Li-logics

Consider the following relevant logics.

Definition A.1 (The logics FDE and B). Anderson and Belnap’s First Degree
Entailment logic FDE can be given a Hilbert-style system with the following rules
(cf. [17]and references therein):

ot (AVB)A(AVC)
B (R1) FavTYe (R9)
ANB
’ " Ao (R10)
A, B
o . =S my
AvC
A
AV B (R4) v mve N
AV B R (_'A A —|B) e ( )
BV A (R5) e
- 1\1/1 2 (R6) -(AvB)vVC (R13)
-(AANB)VC
% (R7) (~AV-B)VC (R14)
e (R8) CAV-BIVE gy

(AVB)AN(AVCO) -(AANB)VC

On the other hand, Routley and Meyer’s basic logic B can be axiomatized as
follows (cf. [32, Chapter 4]). Axioms: (al) (AAB) — A; (AN B) — B; (a2)
A— (AVB); B— (AVB); (a3) [AN(BVC) = [(AANB)V (AANC)]; (ad)
A=A (ab) [(A—=B)ANA—=C) = [A—= (BACO)]; (ab) [(A = C)N (B —
C)] = [(AV B) — C]. Rules: Adj, MP, Suffixing (Suf): A - B= (B - C) —
(A — C); Prefixing (Pref) B - C = (A - B) — (A — C); Contraposition
(Con): A — B = —~B — —A (it is easy to prove that FDE is contained in B).

We have:

Proposition A.2 (The Li-logics, FDE and B). (a) FDE is contained in each
Li-logic. (b) B is contained in none of the Li-logics.
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Proof. (a) It immediately follows by inspection of the formulations of FDE and b?
(cf. also Propositions 2.8, 2.9 and 2.10). (b) It is easy to check that the rule Con
fails in all Mi-matrices except M1 but M1 falsifies a1 and a2 (in case a tester is
needed, that in [12] can be used). O

FDE and B are weak logics. Next, some strong relevant logics are defined.

Definition A.3 (R, RM3 and CL). Anderson and Belnap’s logic of relevant impli-
cation, R, can be axiomatized as follows (cf. [1], [32, Chapter 4]). Axioms: al-a6
of B, and (a7) [A - (A — B)] = (A — B); (a8) A — [(A — B) — B]J; (a9)
(A— B) > [(B—C)— (A— ()] and («10) (A — B) — (=B — —A). Rules:
Adj and MP. The 3-valued extension of R-Mingle, RM3, can be axiomatized by
adding to R the axioms (all) A — (A — A) and (a12) AV (A — B) (cf. [1]).
Finally, Meyer’s Crystal lattice 6-valued logic CL is axiomatized when adding to
R a12 and (al3) (FAAB) — [(-A — A)V (A — B)] (cf. [8]). We note that RM3
is the logic determined by the matrix MRMS3, the implicative expansion of MK3y;
resulting from adding the conditional described by the following truth-table:

— |0 1 2
0[2 2 2
1[0 1 2
210 0 2

(We note that CL is included in RM3: it is immediately checked that a3 is
verified by MRM3.)

We have:

Proposition A.4 (The Li-logics, R, RM3 and CL). None of the Li-logics is con-
tained in RMS3. Therefore, none of the Li-logics is contained in R or in CL.

Proof. (Cf. §2.) It is immediate to check that R5, AA—-A = —(A — B), holds in
all Li-logics except L3 where, nevertheless, R3, A — B, B A —-B = A is provable.
But R5 and R6 fail in RM3. O

The appendix is ended with a proposition on the axiomatization of L1.

Proposition A.5 (Alternative axiomatization of L1). L1 can be formulated as
follows. Axioms: al-a7, Al, A2, A4, A5, A6 and the contraposition axiom A6 :
(A — B) = (=B — —A). Rules: Adj, MP, EA, IV, CIN, EV, Facs, Suf— (i.e.,
A—-B=(B—-C)—(A—C()), and Pref~ (i.e., B—C=(A— B) — (A—
()); also, R2, R4 and R6.
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Proof. Firstly, notice that A6’, Suf— and Pref— are verified by ML1 (however,
Fac—», A - B = (CANA) — (C A B), is falsified). Next, we have to prove
that Trans<, Suf<, Pref+>, Con«>, R1, R3, R5, A3 and A7 are provable in the
new formulation of L1. Well then, Trans— (i.e., A— B,B - C = A — () is
immediate by Suf— (or Pref—), and Trans<», Suf<s, Pref<> and Con¢ are, in
their turn, immediate by Trans—, Suf—, Pref— and A6’. Concerning the specific
axioms and rules of L1 we have: R1: immediate by A6’; R5: by R4, A6’ and a6.
R3: by R2, A6’ and a6. A3: by Al and A6’. A7: by A5, A6’ and a6. O
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