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Abstract

A normalized natural deduction system for the weak relevant logic DW was created
in Brady [1996a] from which the decidability of the logic was determined. Here, we
make adjustments to this natural deduction system and its decidability argument to
fit the logic MC of meaning containment. The two key adjustments to be made are
the removal of the distribution axiom and the introduction of conjunctive syllogism.
The decidability result is new in that the standard methods of using a cut-free Gentzen
system or a filtration of Routley-Meyer semantics do not apply.

The logic MC of meaning containment was set up as such in Brady and Meinander
[2013] justifiably removing the distribution axiom, A& (B V C) — (A&B) Vv (A&C), from
the earlier logic DJ4 of Brady [1996]. (DJY also features in the book Universal Logic
(Brady [2006]), where it was also motivated as a logic based on meaning containment.) It
was argued in [2013] that the distribution axiom was to be removed by showing that it
did not follow from the meanings of conjunction and disjunction and thus should not be
included in a logic based on meaning containment. The quantificational extension MCQ
was also given in [2013] by a corresponding addition of axioms and rules, which does not
include the quantificational distribution axioms. However, in this paper we just treat the
logic MC, axiomatized below in §1, leaving the corresponding treatment of MCQ for a
subsequent paper, due to the length and intensity of this one.

We will start by determining the normalized natural deduction system for the logic
MC and then go on to prove its key property of decidability. To do this, we will prove
the subformula property which states that only subformulae of the formula under test for
decidability can occur in its proof. We then prove a corollary of this which identifies the
depths of subformulae of the formula under test with the depths of subproofs in which
such subformulae can occur in such a proof, thus restricting the occurrences of formulae in
proofs.

Apart from its usage as a decision procedure for the theorems and non-theorems of a
logic, the reason decidability is so important for a logic is that the logic of its meta-theory
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is then classical. This was argued in Brady [2019], due to each formula of a logic being
either provable or not provable in a finite number of steps because of its decidability. Also,
the set of its theorems do not overlap with its non-theorems, thus enabling proof as the
key concept of a logic to be evaluated in its meta-theory in the usual classical manner.

To construct the normalized natural deduction system for MC, we will closely follow
that for the logic DW given in Brady [2006a], “Normalized Natural Deduction Systems
for some Relevant Logics I: The Logic DW”. The reader will derive some benefit from
having this paper on hand. Nevertheless, because of the lapse of time, we will include all
the salient parts that are common to this paper, allowing the current paper to be read
separately from its [2006a] predecessor, rather than as part of an extended Part II, as was
earlier envisaged. The proofs of key results for MC will rely heavily on the corresponding
ones in Brady [2006a], but with appropriate alterations and enhancements.

In order to relate their respective natural deduction systems, we note the differences
between the logics DW and MC. Apart from the removal of the distribution axiom from
DW, MC also contains the Conjunctive Syllogism axiom, (A — B)&(B — C) — . A — C,
and the disjunctive meta-rule, if A = B then C'V A = C'V B, neither of which is in DW.
Whilst the addition of Conjunctive Syllogism will add complexity to the T"— elimination
rule in the modified natural deduction system MMC for MC below, the removal of the
distribution axiom will simplify the threads and strands within its structures, and the
addition of the disjunctive meta-rule will not make a difference as the set of theorems will
not change due to the priming property ‘if AV B is a theorem then A is a theorem or B
is a theorem’ holding for the logic MC. (See Meyer [1976], Slaney [1984] and [1987], and
Brady [2017] for the proof of this property using metavaluations.)

We note here that the normalized natural deduction system should be extendable to
include the rules of MC, as well as the theorems of MC, but this will be left for a later time.
In this context, the inclusion of the meta-rule MR1 would likely add further rules to the logic
MC which can be seen from Brady [1994], where the rules of such a logic with distribution
are regular-truth-preserving in comparison to the rules of such a logic without MR1 which
are general model structure-validity-preserving. However, for the decidability of the rules,
special attention needs to be paid to the deductive subproofs in the corresponding proof
of the Corollary to the Subformula Theorem. (See §4 below, where it is shown that any
subformula of the formula under test has a depth equal to the depth of subproof in which
such a subformula can occur, thus putting a finite limit on the depth of subproofs, i.e. the
degree of the formula under test.)

1 The Logic MC

We set out the sentential logic MC, starting with the axioms and rules.

Primitives.

~, &, V,— (connectives)
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D, q,T, ... (sentential variables)
Formation Rules.

1. A sentential variable is an atomic formula.
2. If A and B are formulae, then ~A, A&B, AV B, A — B are formulae.
Axioms.
1. A— A
2. A&B — A.
A&B — B.
(A— B)&(A— C) = .A— B&C.
A— AV B.
B — AV B.
(A= C)&B —C)—.AVvB—C.
~~A — A

© w N e o s w

A—~B— .B—~A.

10. (A= B)&(B—C)— .A—C.
Rules

1. AA— B= B.

2. A,B = A&B.

3. A-B,C—-D=B—-C—.A—=D.
Meta-Rule.

1. f A= Bthen CVA= CVB.

Note that in MR1 the rule A = B is applied as a single premise rule, as opposed to
the two-premise version of the rule, from which distribution in rule-form, A& (B Vv C) =
(A&B) V (A&C) can be derived. This two-premise rule-form was introduced in Brady
[2015] into MC but was rejected again as discussed in Brady [2022], for similar reasons to
that for the axiom-form of distribution but applied to a rule setting.

We now proceed to establish the basic normalization, subformula property and decid-
ability for the sentential logic MC of meaning containment.
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2 The Modified Natural Deduction System MMC for the
Logic MC.

(i) Some Preliminary Definitions.

In Brady [2006a], we facilitated the normalization by first introducing a modified nat-
ural deduction system MDW, in place of the Fitch-system FDW given in Brady [1984], so
as to align it as close as possible with the final normalized natural deduction system NDW.
Here, we start by modifying FDJ for the logic DJ, which is DW + A10, so as to incorporate
Conjunctive Syllogism. Importantly, we convert it so that, for each connective, there is just
a pair of introduction and a pair of elimination rules, with appropriate conditions attached
to some of these rules. These pairs will consist in the T-version and F-version of the rules,
where the F-version applies to negative formulae whilst the T-version of the rule applies to
positive formulae. (Note that there will be an exception here for the connective —, which
just has the T-version at this stage. An F-version will be introduced later in §3(ii) for the
normalization.) This will be facilitated by replacing formulae by signed formulae, TA and
FA, within the proofs. (We can think of TA as representing A, and FA as representing
~A.) In order to streamline the normalization process, we also introduce commas and
semicolons which separate signed formulae, and which are to be respectively interpreted
as conjunction and disjunction. Such a comma will usually be eliminated by a conjunction
introduction rule yielding TA& B, and similarly for FA vV B. Such a semicolon will be
introduced in the conclusion of the disjunction elimination rule for TA vV B, and similarly
for FA& B, replacing the pair of hypotheses introduced for FDJ in Brady [1984] as part
of the usual disjunction elimination process. Recall that for this pair of hypotheses, there
were added indices, as occurred originally in Anderson [1960] and also in Brady [1984] to
represent the set of dependent hypotheses in this case. However, in our case, there are no
changes in index sets upon the introduction of a semi-colon via TAV B or FA&B. Thus,
we define a step as a sequence of signed formulae, separated by commas and semi-colons as
recursively introduced below, such that their associativity and commutativity is assumed
within their bracketing, and with a single index set, to be used in the natural deduction
proofs to follow. A step can also consist of a single signed formula. We will sometimes
refer to a step as a proof step. We will define a ‘structure’ below, which will inductively
specify the constituents of a proof step.

We proceed with the natural deduction system MMC, in which proofs are set out in the
standard Fitch-style, used by Anderson and Belnap in [1975], with the (unmarked) main
proof to the left and all its various subproofs to its right, the scopes of which are usually
indicated with vertical lines to the left of their steps with the hypotheses underlined.

We can generally use the term proof to apply to either the main proof or any of its
subproofs, but we use the term overall proof to apply to the entire proof of a theorem
consisting of the main proof and all its subproofs. Indez sets, consisting of sets of natural
numbers, possibly empty, and attached to each step of a proof, will be used to represent
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the set of hypotheses upon which the proof step depends. (Such hypotheses are entailment
hypotheses as opposed to those introduced as a disjunct.) Each subproof has a unique
immediate superproof, which is the proof that it relates back to, on its immediate left.
Generally, for two proofs P and @, P is a superproof of @ iff Q) is a subproof of P, this
meaning that there is a right-to-left chain of immediate superproofs from @ to P. And, P
is an immediate subproof of @ iff Q is the immediate superproof of P. (These are specific
subproofs of a particular proof, rather than the general subproofs of the main proof, referred
to above. We will use the term subproof, by itself, to refer to subproofs of the main proof.)
All theorems under test are eventually proved in the main proof, all steps in which have a
null index set as they occur outside the scope of subproofs.

In order to tighten up our natural deduction proofs, we drop the Reiteration Rule of
Anderson [1960], by allowing T—E to apply across proofs, i.e. to TA — B in a superproof
of a proof with TA and TB (or FB and FA) in it. We also drop the Repetition Rule of
Anderson [1960], by allowing the hypothesis of a proof to be its conclusion. Also, because
of the specific structure of weaker logics such as the logic MC, we are able to structure the
index sets so that they have one of the two forms:

() or

a complete subset {j, ..., k} of the natural numbers, for some natural numbers
k> 1and 1 < j < k, where: a complete subset of the natural numbers is
defined as a finite subset of the natural numbers where there are no numerical

gaps.

We also need inductive definitions for depth and structure. We define the depth of a proof
as follows:

The depth of the main proof is 0.

The depth of a subproof is 1 greater than that of its immediate superproof, which can be
the main proof.

We define signs, signed formulae, opposite sign, &-structures, V-structures and whole
structures as follows:
A signis T or F.
If S is a sign and A is a formula, then SA is a signed formula and a structure.
If S is a sign, T or F, then S’ is the opposite sign to that of S, i.e. F or T, respectively.
If aq, ..., are signed formulae or V-structures then (aq, ..., ay) is an &-structure and a
structure. Associativity and commutativity apply to this sequence of commas, making it
an &-multiset.
If aq,...,c, are signed formulae or &-structures then (aq;...;qu,) is a V-structure and a
structure. Associativity and commutativity apply to this sequence of semicolons, making
it a V-multiset.
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Thus, brackets are to be removed internally within a sequence of commas or a sequence
of semicolons, but do occur around an entire such sequence. However, we do remove the
outside brackets from whole structures, which are structures in their entirety.

As stated above, semicolons are to be understood disjunctively. For example, the
structure TA; FB; TC will be subsequently interpreted as AV ~B V C, in the proof of the
Completeness Theorem in §2(v). Commas are to be understood conjunctively, in a similar
manner. As mentioned above, we require each signed formula within a whole structure to
have the same index set. This is achieved by giving a whole structure a single index set,
which then constitutes a proof step, as earlier defined.

To facilitate the addition of A10, Conjunctive Syllogism, we will also make use of
substructures, which are introduced recursively as follows for the whole structure 5.

1. Any signed formula SA of  is a substructure of S.

2. If 1 and a are substructures in the same &-multiset of 5 then a1, s is a substruc-
ture of 3, provided a1, s is not the entire &-multiset and is thus not bracketed.

3. If @1 and as are substructures in the same V-multiset of 8 then aq; as is a substructure
of 3, provided a1;as is not the entire V-multiset and is thus not bracketed.

4. Any entire (bracketed) &-multiset of /5 is a substructure of j.
5. Any entire (bracketed) V-multiset of 3 is a substructure of 3.
6. The whole structure S is a substructure of 5.

In order to structure the emanations in §2(iv) below to deal with A10, any two distinct
substructures will either be disjoint or with one properly contained within the other.

(ii) The Rules of MMC.

We now present the rules of MMC, leaving the positioning of signed formulae within
proofs until after we define ‘strands of proof” and ‘threads of proof’ in §2(iii), which are to
be understood as sub-subproofs, conjunctively or disjunctively separated from each other
within a subproof or the main proof, respectively. It is important to treat strands and
threads in such a dual manner because they will need to be interchanged in the proof of
the Contraposition Lemma of §3(i). Generally, in the interests of setting out the rules of
MMC, we introduce terms with intuitive meanings before giving full definitions later. A
key example of the use of these rules will also be given prior to these full definitions in
§2(iii) and §2(iv) below.

Hyp. A signed formula of form T H may be introduced as the hypothesis of a new subproof,
with a subscript {k}, where k is the depth of this new subproof.

Any hypothesis thus introduced must subsequently be eliminated by an application of the
rule T—1 below.
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T — I. From a subproof with conclusion TB, on a hypothesis TAy,, infer TA — B,_(1y
in its immediate superproof, where a = {j,...,k} and either:

(i) a—{k}=0withj=k=1,or
(i) a—{k}={4,...,k—1}withk >2,1<j<k-—1

The conclusion and hypothesis need not be distinct in T—1I(i). The subproof which derives
TB, from TA,is called the subproof of T—1.
The two cases are as follows:

TA{l} Hyp. TA{k} Hyp.
TB TB,
TA — By T—I(i) TA = Ba_x) T—1I(ii)

In both cases, TA — B can occur inside a structure. See ‘corresponding thread of proof’
in §2(iii) for its positioning.

T — E. From TA, and TA — By, infer T By . (Direct version)

From FB, and TA — By, infer FA, ;. (Contraposed version)

Whilst TA, (or FB,) and its conclusion T By, (or FA, ) are located in a proof P, TA —
By is located in the main proof in case (i) below and it is located in P’s immediate superproof
in cases (ii) and (iii) below.

T—E carries the proviso that one of the following three cases apply:

(i) b= 10, in which case aUb = a, or
(i) a={k}, k>2,b={j,...,k—1}, 1 <j < k—1, in which case aUb = {j,...,k}, or

(i) a = {4,...,k}, k >2, b ={j,...,k—1}, 1 < j < k—1, in which case aUb =
{j,.. ., k}=a.

We say that T—E is applied to a proof containing TA — B into a proof containing T A
(or FB) and TB (or FA).
The three cases are set out as follows:

T — E(i) T — E(ii) T — E(iii)

TA — B@ TB, TA — B{j,...,kfl} TB{j,,..,k} TA — B{j,...,k—l} TB{j,...,k’}
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[TA can be replaced by FB and TB by FA, for the contraposed version.|

We add T—E(iii) to the two cases (i) and (ii) of Brady [2006a] to enable the Conjunctive
Syllogism axiom A10 to be proved. (See §2(v) for a proof of A10.) TA and TB can occur
inside a structure in the subproof, but en bloc applications of T—E(ii) and T—E(iii) are
needed in such a case, as indicated just below.

Such applications of T—E(ii) must be applied en bloc (into a proof, when so applied)
to all the signed formulae of the whole structure, this requiring a &-multiset of separate
entailments for each of these applications, as illustrated in the example below. For T—E(ii),
this thereby maintains the commonality of its index set. There is no change in index set
for T—E(iii), which is always applied subsequent to a T—E(ii) and is similarly applied
en bloc, but to a substructure which emanates from a substructure of the whole structure
to which T—E(ii) has been applied. Further en bloc applications of T—E(iii) can also be
made to a substructure, but this still must emanate from a substructure to which T—E(ii)
has been applied, as above. (See §2(iv) for the definition of ‘emanation of a substructure
from a substructure to which T—E(ii) has been applied’.)

These en bloc applications all need to be made to both strands and threads, occurring
within the emanating substructure. (See §2(iii) for ‘strands’ and ‘threads’ of proof, which
can be thought of as sub-subproofs within a subproof of the main proof. The strands are
separated by commas whilst the threads are separated by semicolons.) The reason for
these en bloc applications is the failure of Factor principles in the logic MC. Neither the
conjunctive nor the disjunctive versions of Factor, viz. A - B — .A&C — B&C and A —
B — .AvVC — BV, are provable in MC. However, (A — B)&(C — D) — .A&C — B&D
and (A — B)&(C — D) — .AV C — BV D are both derivable in MC, these involving the
extra conjunctively added entailment C' — D. These two examples would require the en
bloc applications of T—E(ii) to A, C' and A; C respectively.

Note that T—E(ii) must be applied (en bloc) only once across all threads and strands in
the whole structure, effectively changing the index set. Note also that the index appropriate
for the depth of the immediate superproof, i.e., k — 1, is included in the index set of the
conclusion of T—I(ii). However, unlike for T—E(ii), T—E(iii) need not be applied at all
into its immediate subproof.

The remaining rules of MMC:

T~I. From FA,, infer T~A,.

T~FE. From T~A,, infer FA,.

F~I. From TA,, infer F~A,.

F~F. From F~A,, infer TA,.

T&I. From TA,,TB,, infer TA&B,.

(TA, and TB, can occur anywhere in a &-multiset separated by commas, whilst TA& B,
can be placed anywhere in the same &-multiset, with T A, and T B, removed.)

T&E. From TA&B,, infer TA,.

From TA&B,, infer TB,.
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(If both applied, TA, and TB, are put into separate strands after applying the rule I
below. Note that in the process of finding a proof, if one of them introduces an otiose
strand of proof, it would thereby be removed.)

F&I. From FA,, infer FA&B,.

From FB,, infer FA&B,.

F&E. From FA&B, infer FA,;FB,.

(The conclusion can be placed in an existing V-structure. If not, brackets around it are
needed.)

TV I. From TA,, infer TAV B,.

From TB,, infer TAV B,.

TV E. From TAV B, infer TA,;TB,.

(The conclusion can be placed in an existing V-structure. If not, brackets around it are
needed.)

FvI. From FA, FB,, infer FAV B,.

(FA, and FB, can occur anywhere in a &-multiset separated by commas, whilst FAV B,
can be placed anywhere in the same &-multiset, with FA, and FB, removed.)

FVE. From FAV B,, infer FA,.

From FAV B,, infer FB,.

(If both are applied, FA, and FB,. are put into separate strands using ,I below. As for
T&E, if one of them introduces an otiose strand of proof, it would thereby be removed.)
,I. From SA,, infer SA,SA,. (Again, one needs to see that each SA in SA,SA, has
distinct rules applied to it, so that neither introduces an otiose strand of proof. One must
also ensure either that T&I or FVI is subsequently applied to eliminate this comma or that
T—E applications are made to T—-formulae separated by such a comma, which is then
eliminated by application of T—1I.)

; E. From SA,;SA, infer SA,.

A formula A is a theorem of MMC iff the structure T Ay is provable in the main proof.
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T—E(ii) and T—E(iii). (An example of some applications.)
TA — B{j,...,k—l} TAVC, FK{k}

TC - DV Hy; p1y | (TATC),FKyy TV E]

TK — My . k-1} TB;TDV H),FM; iy T — E(ii)]
TB — Gyj.. p-1} TB;TD;TH),FMy; . 1y TV E]

TD — Xy . j-1} TG;TX;TZ),FM;. r T — E(iii)]?

o~ o~ o~ o~ o~ o~ o~ o~

[
[
[
[
TG;TX V Z;TX V Z),FMy; 5 [TVI?
[
[
[
[
[

TG — J{j,...,k—l} TG; TXVZ),FM{j7..'7k} 7E]

TXVZ— Wy, gy | (TLTW),FMy T — E(iii)]?

TIVW =Yy . g1y | (TIVW;TIVW),FMy gy T v I1)?
TJVW,FM . E]
TY,FMy; . 1y T — E(iii)]

For the first substructure, TB;TD;TH, to which T—E(iii) is applied, TB emanates
from TA and TD;TH emanates from TC, where T—E(ii) has been applied to TA and TC'
Also, for the second substructure TG;TX V Z, to which T—E(iii) is applied, TG emanates
from TA and TX V Z from TC. As indicated, both of these are separate applications of
T—E(iii), as they have separate emanations. However, for the third substructure TJ Vv W
to which T—E(iii) is applied, TJ V W emanates from the substructure TA;TC.

Each of the above entailments with index {j,...,k — 1}, though vertically placed for
convenience, are to be placed in separate strands within a thread of proof, to be called ‘the
corresponding thread of proof’ (see below).

(iii) Threads and Strands of Proof.

In order to determine the placement of signed formulae within a proof, we inductively
define a thread of proof and a strand of proof and their associated concepts within the main
proof and its subproofs as follows. As indicated above, these are both considered as sub-
subproofs within a subproof or the main proof, disjunctively or conjunctively separated,
respectively. Also, it is important to maintain duality between these concepts for the
purposes of the Contraposition Lemma of §3(i).

Note that there are no extensions to the threads of proof, as introduced in Brady
[2006a] for the logic DW, because these are not needed with the absence of the distribution
axiom in MC. This allows us to simplify the threads and dualize them with strands in a
perspicuous fashion, as indicated below.

(i) The hypothesis of a subproof initiates a new thread of proof, which we will call the
basic thread of proof. It also initiates the basic strand of proof, maintaining duality.

(ii) If TAV B (or FA&B) occurs in a thread or strand of proof and TVE (or F&E) is applied
to it then two adjacent threads of proof are initiated on either side of the introduced comma,
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within the same structural context as TAV B (or FA&B), i.e. with the continuation of the
threads and strands in the context. So, if TAV B (or FA&B) is in a thread of proof then
TA;TB (or FA;FB) replaces it within the V-structure and if TAV B (or FA&B) is in a
strand of proof then TA;TB (or FA;FB) replaces it within the &-structure, but bracketed
as a pair of threads. Rules can then be applied to the signed formulae on either side of the
semicolon, leaving the other side (and, indeed, the rest of the structural context) intact,
except of course for en bloc applications of T—E(ii) or T—E(iii).

(iii) If TA or FA occurs in a thread or strand of proof and one of the rules T—E (applied
to TA or FB from a formula of form TA — B, in all three of the above cases), T~I, T~E,
F~I, F~E, T&E, F&I, TVI or FVE is applied to it then the conclusion is still in the same
thread or strand of proof, with the same structural context, with the obvious exception
for the en bloc applications of T—E(ii) and T—E(iii), as indicated above. Also, if T&E
or FVE is applied twice yielding each of its components then these components are put
into two adjacent strands, which are initiated by an immediately previous application of
L. (See (vii) below for ,I.)

(iv) If TA, TB (or FA, FB) occur as separate strands of proof in an &-structure, and
T&I (or FVI) is applied to them then the conclusion TA&B (or FA V B) is placed in the
&-structure, terminating the two strands.

(v) There are three cases, (I), (II) and (III), for T—1I:

(I) The rule T—I(i), where T—E(i) has not been applied into the subproof of the rule
T—I(i). In this case, the conclusion of the rule T—I(i) will initiate a strand in the main
proof. Where there are more than one such conclusion of the rule T—I(i), they will be
separated by commas, forming separate strands.

(IT) The rule T—I(ii). The conclusion of T—I(ii) is put in the same thread, in the imme-
diate superproof as all signed formulae of form TA — B to which T—E(ii) or T—E(ii)
is applied into the subproof of T—I(ii), all of which are separated by commas in separate
strands. (This thread is called the ‘corresponding thread of proof’, introduced below.)
Specifically, the conclusion of T—I(ii) initiates a strand of proof that immediately follows
all the occurrences of signed formulae of form TA — B to which T—E(ii) or T—E(iii) has
been applied. Further, the above strands, separated by commas, are all terminated in this
process.

Indeed, each subproof of depth > 2 relates to a specific thread of proof in its immedi-
ate superproof. This is called its corresponding thread of proof, exemplified below, which
must contain all the pertinent T—-formulae concerning the application of the T—I(ii),
T—E(ii) and T—E(iii) rules between the subproof and its immediate superproof. These
T—-formulae in the corresponding thread of proof are said to form a cluster of T—-formulae
or a T—-cluster. Note also that the index sets of all the formulae in a T—-cluster are the
same and can either be of the form {k} or {j,...,k}, for 1 < j < k — 1. (For the proof of
this, see the Index Sets Lemma in §2(v) below.)
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Corresponding thread of proof.

TA— B,TC = D,TB = Jg; . p-1y ---
TA, FDyy

TB,FCy;. . x—1y [T — E(ii)]
TLEC, . k—1y [T — E(iii)]

TGy, ky

T—E(iii) applies to the singleton structure T B which emanates from the substructure T A
to which T—E(ii) has been applied.

TA— B, TC — D, TB — J and TE — G form a T—-cluster and are in the corresponding
thread of proof of the subproof with hypothesis TE and conclusion TG.

(III) Tt remains to consider the application of T—I(i) in the case where T—E(i) has been
applied into the subproof of T—I(i). Then, as in (II), the conclusion of T—I(i) occurs
immediately after all the occurrences of signed formulae of form TA — B to which T—E(i)
is applied into this subproof, each separated by commas, with the same constraints and
definitions as for (II).

(vi) If SA;SA occurs in two threads of proof within the same strand and ;E is applied then
these two threads of proof terminate at their respective SA, but the conclusion SA of ;E
is still contained in the thread or strand of proof prior to the application of the rule TVE
or F&E that introduced the semicolon that was eliminated by ;E, as exemplified below.
Quite generally, through the above initiation and termination of threads and strands, the
threads and strands of their structural contexts still remain. Thus, in the example below,
the threads and strands occurring above such initiation still apply after their termination.

Two threads of proof.

TAV B,
TA; TB,

SD;SE. (conclusions of T' — E(ii), maintaining the threads.)
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The two threads of proof are (i) that which contains TA, SD and SC on the left side
and (ii) that which contains TB, SE and SC on the right side. That which contains
TAV B and the single SC can be in a thread or strand, in accordance with their structural
context. Threads (i) and (ii) terminate at their respective SC’s. Note that any initiation
and termination of adjacent threads of proof occurring between T A and SC on the left and
between TB and SC on the right are excluded from this example.

(vii) Two strands of proof are initiated by application of the ,I rule, yielding two adjacent
strands of proof. Two applications of the T&E (or FVE) rule, ie. from TA&B, TA&B,
(or FAV B, FAV B,) can be used to infer TA, and TB, (or FA, and FB,), each of
which applies to an adjacent strand of proof. However, we can also apply two rules to
the same signed formula, either two introduction rules or an introduction rule and an
elimination rule. The only cases of two elimination rules are covered by T&E and FVE.
However, two strands of proof must be terminated in either of two ways. The main way is
by an application of T&I (or FVI), i.e. from TA, TB, (or, FA, FB,) we infer TA&B,, (or
FAV B,), combining the two strands into the one signed formula. It may seem possible
to apply two rules within a proof to yield the same signed formula, like the converse of
initiation. However, in such a case, one of the strands would become otiose and we would
no longer have a standard overall proof (formally introduced below). The other way of
terminating separate strands is in the case of a cluster of T—-formulae, upon application
of a T—E(ii) or T—E(iii) rule, as above.

(viii) The remaining signed formula occurrences in a thread or strand are repeats of the
above introduced signed formulae, which stay the same whilst some rule is being applied to
signed formulae somewhere else in the structure. We call these repeats parametric signed
formulae, whilst the signed formulae to which rules are applied are called active signed
formulae.

(ix) The conclusion of a proof terminates its basic thread and strand of proof. So, the basic
thread of proof in a subproof is that which is initiated by the hypothesis of the subproof,
does not contain any adjacent threads or strands, continues after they all terminate with
the conclusion of their ;E rule, as in (vi) above, and their T&I or FVI or T—E rules, as in
(vii) above, and finally terminates with the conclusion of the subproof. In fact, the basic
thread of proof contains just the structures with a single signed formula.

By explicitly including strands, separated by commas, as well as threads, separated by
semicolons, we are improving upon Brady [2006a], which only included commas separating
threads, with strands formed vertically within threads. This will clarify the strands, which
will need to be interchanged with threads in the proof of the Contraposition Lemma of
§3(ii). We are also enabling the en bloc applications of the T—E(ii) and T—E(iii) rules
over both threads and strands together, which will then give clarity to the last joint ap-
plication of the T—E(ii) and T—E(iii) rules applied across a whole structure, which will
have to be interchanged with the T—E(ii) rule in the proof of the Contraposition Lemma
of §3(ii). This last joint application of the T—E(ii) and T—E(iii) rules will require the use
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of parametric signed formulae in order to align these T—E(ii) and T—E(iii) applications
across a whole structure.

(iv) Emanation of a Substructure from a Substructure to which T—E(ii) has
been Applied.

A critical concept associated with that of strands and threads is that of the emana-
tion of a substructure from a substructure to which T— E(ii) has been applied. (We will
call this substructure to which T—E(ii) has been applied the initial substructure.) So,
an application of T—E(iii) is made en bloc across a substructure that emanates from a
substructure of the whole substructure to which T—E(ii) has been applied, i.e. from the
initial substructure. A substructure emanating from an initial substructure is achieved by
first applying T—E(ii) to that substructure of the whole structure, yielding what we will
call the applied substructure, which has the same structure of commas and semicolons as
the initial substructure, but with each of the signed formulae replaced by their consequents
of the application of T—E(ii). We can then apply the other derivation rules of MMC (or
NMC, later), to the signed formulae, commas and semicolons of the applied substructure to
yield an emanated substructure, to which T—E(iii) can then be applied. In this process, we
refer to the intervening substructures as emanating substructures. These derivation rules
of MMC can include applications of T—E(iii) itself, with its own emanation process. (We
will deal with the F—-rules of NMC in §3 below.) Such emanation follows the strands and
threads down a subproof of depth 2 or more, remaining within the confines determined by
the initial substructure. So, in particular, if this process reduces to a single signed formula
then no comma or semicolon can be subsequently attached to it within the emanation as
this would bring in a signed formula from outside such a confinement. Note that T—1(ii)
cannot be applied at all to the emanating substructure as its conclusion is then outside the
subproof. Note however that a T—-cluster can occur in an emanating substructure with
T—E rules applied within the emanation and the T—I(ii) rule applied into the emanation
from an immediate subproof.

(v) Lemma and Theorems.

We next prove an important property concerning the changes in index sets, or lack
thereof, over the length of a subproof. First, we need the following definition: An overall
proof is standard when every step is used in the process of deriving the final theorem. Thus,
standard overall proofs do not contain any otiose steps in their main proof nor in subproofs,
i.e. any steps that are not necessary for the derivation of their respective conclusions. Note
that we have been deleting such otiose steps in the above for this purpose.

Lemma 1. (The Index Sets Lemma)

(a) Each step in the main proof must have the index set ().

(b) Each step in a subproof of depth 1 must have the index set {1}.

(c) For any subproof P of depth k > 2 in a standard overall proof, there is exactly one j in
the range, 1 < j < k—1, so that each step in P has one of the two index sets, the singleton
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set {k} and the complete subset {j,...,k}, the latter index set being obtained by an en
bloc application of T—E(ii), this being the only rule that can effect a change of index set
in the proof P.

Proof. (a) The only rule that can put a signed formula into the main proof is the T—1(i)
rule, which introduces the null index set. Then, there is no rule that can change it.

(b) A subproof of depth 1 starts with the index set {1}, and again there is no rule that
can change it.

(¢) We start with an outermost subproof P and then apply induction on the number of
superproofs in the general direction of the main proof until we reach depth 2. T—1I cannot
be applied to put its conclusion into the outermost proof. So, T—E(ii) is the only rule that
can change an index set within the proof P and is applied from its immediate superproof,
en bloc across a whole structure at a time. (Note that T—E(iii) does not change the index
set within P.) Here, the index set {k} is changed to the complete subset {j,...,k}, where
1 < j <k —1, ensuring an index set which includes the index k — 1 as well as k. Since

{j,...,k}is not a singleton set, T—E(ii) cannot be reapplied and so no subsequent changes
in index set are possible. In a standard overall proof, there can only be one such index set
{j,...., k}, viz. that of the conclusion of P.

We next let P be a superproof of depth k& > 2. The above argument regarding T—E(ii)

still applies here. We need to show that the placing of a conclusion of a T—I(ii) rule into
the proof P will not give rise to new index sets. Either T—E(ii) is applied from P into the
subproof of the rule T—I(ii) or not.
(o) If T—E(ii) is so applied, the index sets of the subproof of T—I(ii) changes from
{k+1} to {k,k+ 1} or from {k + 1} to {j,...,k, k + 1}, yielding a conclusion into P of
index set {k} or {j,...,k}, respectively. (By induction hypothesis applied to the subproof
of T—I(ii), {k,k+ 1} and {j,...,k,k + 1} are the only index sets, for some single j such
that 1 < j < k —1.) So, the conclusion of T—I(ii) will have the same index set as the
corresponding TA — B formulae to which T—E(ii) were applied. So, T—I(ii) does not
give rise to new index sets.

(B) If T—E(ii) is not applied, the index sets of the subproof of T—I(ii) cannot change,
which then contradicts the proviso for the T—I(ii) rule. (The T—I(i) rule, in which there
is no change in index sets in its subproof, only applies at depth 1.) So, T—E(ii) must be
applied and the conclusion of case («) follows.

We now check to see that all these modifications to the original system FMC do not
change its set of theorems. Note that the original system FMC is the natural deduction
system for MC which is in the same style of those in Brady [1984]. From this point, we
assume that all overall proofs are standard.

Theorem 1. (Soundness Theorem)
If A is a theorem of MC then A is a theorem of MMC.

Proof. We need to check all the axioms and rules of MC. We just give A7, A10 and R3 as
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examples. Also, see axiom A9 in Brady [2006a]. The meta-rule MR1 need not be checked
as the priming property holds for MC, justified by its metacompleteness. (Again, see Meyer
[1976], Slaney [1984] and [1987], and Brady [2017] for this.)

AT

—_

T(A = O)&(B - O)) ()
| T(A - O)&(B = C), T(A = C)&(B - C)qy
TA - C,TB — Cqyy
TAV By
| TATBpy,
TC; TC
TC 2
TAV B — Cyyy.
T(A— C)&(B —C)—.AVvB — ()

© 00 N O Ot ks W N

A10

1| T(A= BB - ),
| T(4 - B)&(B — C), T(A - B)&(B - O)y
TA 5 B.TB - Cpy
TAg
TB
TC
TA = Cy

T(A— B)&(B —C) = .A— ()

o N O Ot = W N
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R3
1 TA— By (Assumed to be proved)
2 TC — Dy (Assumed to be proved)
3 | TB—Cp Hyp.
4 TAgq Hyp.
5 | | TBy T—E®)
6 TCp1.2 [T—E(ii)]
7 TDy 9 [T—E(®)]
8 | TA— Dy, [T—1(ii)]
9 TB—C—.A— Dy [T—I(1)]

Theorem 2. (Completeness Theorem)
If A is a theorem of MMC then A is a theorem of MC.

Proof. We base the proof on Anderson’s method in [1960] for E and EQ, also set out in
Brady [1984] for other sentential relevant logics. We introduce quasi-proofs appropriate for
MC by adding the following three rules to the list of rules for MMC:

Prefizing. From TA — By, infer TC — A — .C' — By.
Suffizing. From TA — By, infer TB — C — .A — Cj.

Theorem. TAy, for any theorem A of MC, may be inserted into the main proof.

These three rules are all applicable in threads and strands of proof within the main proof,
the results of which can then be used either in subproofs via T—E(i) or in the main proof
via the rules for the other connectives.

As in the method set out in Anderson [1960] and Brady [1984], the completeness the-
orem is proved by induction on subproofs, starting with an outermost subproof with hy-
pothesis THy;y, replacing its steps by signed formulae in its corresponding thread of proof
within its immediate superproof. The resultant overall proof will be a quasi-proof appropri-
ate to MC. We continue with this inductive procedure until only the main proof remains,
which is then converted into a Hilbert-style proof for MC, applying MR1 to the threads.

Generally, we consider any signed formula T'A or FA, with index set a, within one of the
threads or strands of proof within an arbitrary subproof P, where a can be {k}, with k > 1,
or {j,...,k}, with £k > 2 and 1 < j <k — 1. For this procedure, we replace such TA and
FA by A and ~A, respectively, to form an unsigned formula. We next consider an indexed
whole structure occurring in the proof P. Such whole structures, when put together to
the right of the scope line of the proof, constitute the whole proof in P from hypothesis to
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conclusion. We define a whole conjunction-disjunction as the application of conjunction and
disjunction to the signed formulae of a whole structure, in accordance with their respective
commas and semi-colons, of all unsigned formulae in the whole structure, bracketed in
the same manner as in the structure. We write the whole conjunction-disjunction CD of
the whole structure «, containing a particular signed formula TA (or FA) as CD,[(~)A4],
the negation preceding A in case the signed formula is FA instead of TA. This whole
conjunction-disjunction encapsulates the interpretation of the whole structure as a single
formula. For the purposes of T—E(iii) below, we will also apply this terminology to
substructures /3 of a whole structure «, as required for applications of T—E(iii).

As above, a can be either {k} or {j,...,k}, in which case a—{k} is either () or {7, ..., k—
1} in the immediate superproof of P. Note, however, that the immediate superproof,
referred to here, is the main proof when k£ = 1, and also that Theorem is used to replace
steps whose index set is {k}, which also occurs in the main proof. So, for both these simple
cases, the immediate superproof is effectively the main proof as a — {k} is ) and we will
be treating these initially below, as they involve neither T—E(ii) nor T—E(iii), which will
then be considered separately.

So, we first consider the case where the structures have the singleton index set {k},
which applies in both the above simple cases. We then replace each whole structure in
turn, which includes a signed formula TA (or FA) in a strand or thread of proof of P, by
its corresponding signed formula:

TH — CDgy[(~)A]p, where TH is the hypothesis of the subproof P.

Such corresponding signed formulae with a null index set are placed in suitable strands
within the corresponding thread of proof of the main proof.

We determine the quasi-proof replacements for each appropriate rule in turn, given
the starting point, TH—Hy. for the hypothesis TH. We initially consider the ~-rules,
T—E(), TVI, F&I, T&E, FVE, the latter two being single applications. In each of these,
the form TE—Gy is available for some premise E and some conclusion G, from which
can be proved TCD,[E]—CD,[G]y by adding respective disjunctions and conjunctions
in accordance with the structure a, by repeatedly using theorems of the forms, T(C' —
C)&(E — G) — .C&E — C&Gp and T(C — C)&(E — G) — .CV E — CV Gy. Hence,
by Prefixing, TH — CD4[E] — .H — CD4[G]p, and then, by T—E(i), TH — CD,[E]p
implies TH — CD,[G]y in the main proof. This implication establishes the quasi-proof
replacements in the main proof for the above rules in turn.

There are four remaining rules concerning the introduction and elimination of threads
and strands:

(I) If there is an introduction of two threads of proof due to TVE or F&E, then the
corresponding signed formulae are unchanged or equivalent due to T~(A&B) < ~AV~Bj,
with the semicolon replaced by V in each case.

(IT) If there is an elimination of two threads of proof due to ;E, then the corresponding
signed formulae would be equivalent due to TAV A < Ay.
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(IIT) If there is an introduction of two strands of proof due to ,I, then the corresponding
signed formulae would be equivalent due to TA&A <+ Ay, with the comma replaced by &.
(IV) If there is an elimination of two strands of proof due to T&I or FVI, then the
corresponding signed formulae would be unchanged or equivalent due to T~A&~B <
~(AV B)y, with the comma replaced by & in each case.

This completes the available rules that apply to steps in the proof P with index set
{k}. So, TH — Cj is the corresponding signed formula in the main proof, for a conclusion
C of proof P with k = 1. This completes what we require for the case k = 1. However,
for proofs P with k > 2 and 1 < j <k —1, TH — CDy[FE1, ..., E,]p, is the corresponding
signed formula in the main proof with the conjunctions and disjunctions between the signed
formulae En, ..., E,, from the n strands and threads involved, prior to an application of
T—E(ii). As can be seen below, this application would then yield en bloc conclusions of
the form Gy, ..., Gy, from which TCDy[Ey, ..., En] — CDa[Gy, ..., Gulyj,. .. k—1y is derivable
in the immediate superproof by adding the respective conjunctions and disjunctions by
using entailments in the main proof.

For the sake of adding T—E(iii) later, we continue by basing our corresponding signed
formulae in the immediate superproof on TCD,[F, ..., E,] instead of TH, as this en-
ables the emanated substructures to mesh with the substructures formed from Fj, ..., E,.
As for the main proof above, the corresponding signed formulae with non-null index set
{j,...,k—1} are then placed in suitable strands within the corresponding thread of proof
within the immediate superproof @ of P. We will proceed to prove TCD,[Ey, ..., E,] —
CD,[K1, .., K]y, .. -1} for some emanated CD,[K1, ..., K]y, . -1y until the final con-
clusion C of the subproof is reached with corresponding signed formula
TCDu[Er, ..., En] — Cyj. . p—1y from which TH — Cy; . —1y is derivable by apply-
ing Suffixing and T—E(i) to TH — CDy[E1, ..., Ey]p, which was established above. This
will then complete what we require for the remaining case k > 2 and 1 < j <k —1, as it
will allow the proof by induction on depth of proof to proceed.

We start by determining the quasi-proof replacements for each appropriate rule in turn,
but for the superproof (). As above, for each of the ~-rules, T—E(i), TVI, F&I, T&E, FVE,
the latter two being single applications, and the four remaining rules concerning the intro-
duction and elimination of threads and strands, with reference to the superproof @), the form
TJ — K is available for some premise J and some conclusion K. By adding respective con-
junctions and disjunctions in accordance with the structure a, CD,[J] — CD4[K]y. Then,
by Prefixing, TCDy[E1, ..., Ey] — CDqy[J] — .TCD4[E1, ..., En] — CD4[K]p and then, by
T—E(), TCDa[EN, ..., En] — CDa[J]yj,. .. k—1) implies TCDy[E1, ..., Ep] — CDo[K] ;. k-1
in the immediate superproof () of P. This implication then establishes the quasi-proof re-
placements for the above rules in @, following an application of T—E(ii), to be treated
immediately below.

It remains to consider T—E(ii), T—E(iii) and the T—-clusters. For T—E(ii), the forms
TEL — Gigj,..  k—1}s---» TEn — Gryj . x—1y are available in the immediate superproof
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@ for the application of this rule to the n signed formulae FE1, ..., E, of the whole struc-
ture . By repeated applications of T&I, T(E1 — G1)&. .. &(En — Gn)yj,. .. k—1}, from
which TCD4[E1, ..., En] — CD4[G1, ..., Gylyj,. .. k—1y is derivable by adding the respec-
tive conjunctions and disjunctions by using entailments in the main proof. In particular,
T(A — B)&(C — D) — .A&C — B&Dy and T(A — B)&(C — D) - .AVC — BV Dy
are used, which can then be extended from 2 formulae to the n formulae above.

For T—E(iii), the forms TJi— Ky ¢ . p—1}s--+» Tdm — Ky (5. k—1) are available
in the immediate superproof ), but applied to an emanated substructure v with signed for-
mulae Jy, ..., Jy,, yielding K7, ..., K, respectively with the application of T—E(iii) into the
proof P. As above for T—E(ii), TCD,[J1, ..., J;] = CD4[K1, ..., Kin]yj,. .. k—1}- Preceding
this application of T—E(iii), we must have TCDg|[By, ..., By] = CD,[J1, ..., Jm]g; . k13,
where CDg[By, ..., Bp] is the conjunction-disjunction of a substructure 5 of the whole struc-
ture a[Ey, ..., B, with signed formulae Bj, ..., B, from which the substructure v emanates.
This entailment can be seen from the emanation process which initially applies T—E(ii)
and then just the ~-rules, T—E(i), TVI, F&I, T&E, FVE, as above, together with the
comma and semicolon rules, also as above. Since we have both TCDg[By, ..., By] —
CD,[J1, s Il .. =1y and TCD,[J1, .oy Ji] = CD5[K1, oy K]y, . g—1) by T&I and
Theorem (A10), TCDg[By, ..., By] = CD4[K1, ..., Kinl(j,. .. k—13- We then replace the indi-
vidual signed formulae By, ..., By of Ey, ..., E,, by the conjunction-disjunction CDg[B1, ..., By)
leaving the remainder of Fj,...,E, as is. We represent the conjunction-disjunction of
this remainder in the form of the outer context CD’ so that CD'(CDg[By, ..., Bp]) is just
CD4[E1, ..., Ey). Then, we apply the T—E(ii) process as above, but with this replacement,
so that the signed formulae in CD’ from Ej,..., E, yield signed formulae in CD” from
G1, ..., Gy which correspond exactly to those in the remainder of Eq, ..., E,. And the re-
placement, CDg[Bj, ..., Bp| yields CD,[Kj, ..., K], as above. Putting this result together,
TCD'(CDg|By, ..., By]) = CD"(CD4[K1, ..., Ki]) (.. .. k—1}, where the outer CD’ provides
the parametric context for the substructure 8 within «, as indicated above, and CD"’ for the
emanated substructure « within its whole structure, as each rule is treated this same way
with common parametric context. So, TCD4[E1, ..., E,] — CD”(CD,[Kq, ..., Knl)g,. .. k—1}
follows by definition. Successive replacements are then used for subsequent applications of
T—E(iii), with the preceding replacements remaining in place for the treatment of later
applications, which will apply to substructures containing any earlier substructures. Sub-
sequent applications of T—E(iii) can also be made to disjoint substructures, which would
mean that their corresponding replacements would have to be included in the remainders
of F1,..., B, in the same way as the above replacements have been included within «.

Lastly, we examine T—1I(ii), in conjunction with the T—E(ii) and T—E(iii) rules,
forming a T—-cluster. This consists of a series of T—E(ii) and T—E(iii) rules, applied
to T—-formulae, separated by commas, with index set {j,...,k — 1} in the superproof @,
followed by a single concluding T—1I(ii) rule, yielding the entailment from the hypothesis
of P to its conclusion, also with index set {j,...,k — 1}. What we will show is that the
conclusion of the T—1(ii) rule is derivable from the conjunction of the entailments to which
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the T—E(ii) and T—E(iii) rules are applied. This derivation will be conducted in a special
subproof so that their respective entailment can be established.

To do this, we let TA; — By, ..., TA. — B, be the entailments to which T—E(ii) and
T—E(iii) are applied in @, all conjoined but with index {1}. We take this conjunction
to be the hypothesis of @', taken from these key elements of . We then apply T&E to
eliminate these conjunctions. Let TC(y) be the hypothesis of the proof P’ with index set
{2}, which can only be impacted from outside of itself by the T—-rules, applied from the
main proof, in the case of T—E(i), from @’ in the case of the T—E(ii) and T—E(iii), and
from a subproof of P’, in the case of T—I(ii). We let TDy; 9 be the conclusion of P,
derived as per the proof P, but with indices {1} and {1,2}, using the various T—-rules.
Then, by T—1(ii), TC' — Dyyy is derived in Q" as the conclusion of the T-cluster. Finally,
apply T—I(i) to yield T(A; — B1)&...&(Ae — Be.) — .C — Dy. Hence, by Prefizing,
TCD,[E1, ..., En] — (A1 — B1)&..&(Ae — B.) — .CD4[Ey,...,E,] — .C — Dy and
TCD,[F1, ..., En] = .C — Dy, k—1y can be proved, as required in (), using the induction
assumption TCD4[EY, ..., Bn] — (A1 — B1)&..&(Ae = Be)yj,. k—1}-

At the end of the induction on subproofs, we have all the corresponding signed formulae
with a null index set placed into the basic thread of proof of the main proof. We just need
to show how this basic thread of proof can be converted into a Hilbert proof within MC.
We replace, in the main proof, steps of form TA by A and FA by ~A, all commas are
replaced by ‘&’, and all semicolons are replaced by ‘V’, maintaining the brackets. The
rules of MMC readily convert into rules and theorems of MC, as do the additional rules
of Prefixing, Suffixing and Theorem. However, we do need to consider the application of
the meta-rule MR1, which is a rule applied into a disjunctive context. So, if A = B then
CV A= CV B and, together with C&A = C&B, CD,[A] = CD,[B] follows. So, any
theorem A of MMC is provable in MC.

3 The Normalized Natural Deduction System NMC.

In natural deduction for classical logic, there is usually a plethora of rules allowing substi-
tution of equivalents as well as a range of deductive rules, and this seems to capture the
natural freedom of deduction in classical logic. For relevant logic, one has to be more careful
to ensure that one stays within the confines of a particular relevant logic. If one considers
how one would normally perform a Fitch-style natural deduction in relevant logic, there
is a fairly tight routine in the methodology with each connective generating certain rules
and procedures, enabling a fairly quick proof of a theorem. Indeed, there is a difference
between natural deduction, as one would normally perform it for relevant logics, and the
breadth allowed in the systems set out in Brady [1984] or even that in §2 above for MC.
The feature of the systems in [1984] and §2 is that they are broad enough to follow the
Hilbert-style proof procedure, using Modus Ponens and Affixing Rules, as occurs in the
proof of soundness in Theorem 1. What normalization will do is to fix the system so that
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one is forced to apply a tight methodology, divorcing the system from the Hilbert-style
approach.

We give a striking example of the MC theorem A& B — BV C, proved in accordance
with the Hilbert-style soundness argument, as against a normalized proof.

Soundness Argument Normalized Argument
TA&Bg TA&By
By TBuy

TA&B — By [T—1I(1)] TBV Ciy
TByy TA&B — BV Cy

- TBVCy,

TB — BV Cy [T—1(1)]

TB — By

| TALBg,

TBy [T—E()]
TBy 23 [T—E(ii)]
TBV Cf 9y [T—E(@)]

TA&B — BV Cyy

TB - B — .A&B — BV C) [T—1(1)]

| TB

TB — By [T—I(i)]

TA&B — BV Cy [T—E()]
The Soundness Argument uses the three axioms A3, A5 and Al, together with the Affix-
ing Rule (R3) and Modus Ponens (R1). One should note the introduction of T—, where
the four marked T—I(i) rules occur, and the subsequent elimination of T—, where the
three marked T—E(i) rules and the marked T—E(ii) rule occur. Indeed, when such in-
troductions and eliminations are removed in accordance with our normalization procedure
below, we will get the Normalized Argument on the right, which illustrates the tight rou-
tine normally used in relevant natural deduction. Note that, in its subproof, we start
with a hypothesis, eliminate a connective &, reaching a suitable turning point TBy;y, and
introduce a connective V, reaching the conclusion of the subproof. The final conclusion,
TA&B — BV Cy, initiates the basic thread of proof of the main proof, which is as far as
it goes. The elimination rule followed by an introduction rule in the subproof goes some
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way towards illustrating the structure of normalized proof.

(i) The Structure of Normalized Proof

We proceed to determine what the structure of normalized overall proofs would look
like. To normalize MMC we need to remove deviations in the overall proof, where such
deviations are the introduction of a connective and the subsequent elimination of it from
the same signed formula. As we have seen above, this would also include the introduction
and elimination of T—-formulae, involving more than one proof. In order to do all this,
we remove [E-turning points, which are signed formulae, introduced by a connective intro-
duction rule and subsequently eliminated by the elimination rule for the same connective.

Once these deviations are removed, as will be shown in Theorem 3, each proof will
be made up of some normal pieces of proof (n.p.p.), which begin at a whole structure or
substructure which is a starting point, eliminate connectives in turn (except —) until we
reach a whole structure or emanating substructure which is an El-turning point, and then
introduce connectives in turn (except —) until we reach a whole structure or emanating
substructure of the starting point which is a finishing point. The sequence of eliminations
is called an elimination phase of the n.p.p. and the sequence of introductions is called an
introduction phase of the n.p.p.

We proceed to clarify the above concepts. Firstly, there may be no elimination phase
or no introduction phase. Indeed, there may be neither, in which case the entire n.p.p.
reduces to a single step in the proof. In such a case, we continue to apply the turning point
terminology. The hypothesis of a subproof is always a single starting point for the first
n.p.p. and the conclusion of a proof is always a single finishing point for the last n.p.p.

EI-turning points (EI-t.p.’s) occur in single strands and threads of proof but, by use of
parametric signed formulae, they can be made to line up into whole structures or emanating
substructures of the starting structure, called EI-turning structures (EI-t.s.’s). This is done
as follows. Once an EI-t.p. is reached in one strand or thread of proof it is repeated until
all the other strands and threads in the structure are EI-t.p.’s, creating a single whole
structure or emanating substructure.

El-t.p.’s may also consist of a cluster of T—-formulae, as follows. A cluster of T—-
formulae consists of T—-formulae in a thread to which T—E(ii) or T—E(iii) rules are
applied into an immediate subproof, together with the T—-formula which is the conclu-
sion of T—I(ii) from this subproof. The thread of proof involved is the corresponding
thread of proof for the immediate subproof. In such a cluster, a number of strands, called
initial strands, within a single thread can terminate in T—-formulae, to which T—E(ii) or
T—E(iii) is applied into an immediate subproof, yielding a single T—-formula, called the
latter T—-formula, upon subsequent application of T—I(ii), thus eliminating the strands.

The remaining starting and finishing points of n.p.p.’s are determined by the application
of T—E(ii) or T—E(iii) from the immediately preceding subproof into this subproof with
the TA (or FB) of the rule being a finishing point of an n.p.p. and the TB (or FA) of the
rule being the starting point of another n.p.p.. Due to the en bloc application of T—E(ii)
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to a whole structure and T—E(iii) to an emanating substructure, all the corresponding
finishing points can be parametrically put into the same structure, called a finishing struc-
ture, and similarly all the corresponding starting points can be parametrically put in the
same structure, called a starting structure.

Applications of ,I generally occur in the elimination phase of an n.p.p., as their intro-
duction enables one to eliminate &, whilst the applications of ;E generally occur in the
introduction phase of an n.p.p., as their elimination enables one to introduce V.

Now for the lemma which determines where n.p.p.’s can occur in a normal proof.

Lemma 2. (The N.P.P. Lemma)

(a) For the main proof, there is only one n.p.p. with introduction rules only. This means
that T—E(i) is removed, as well as TVE and F&E which introduce semicolons into the
main proof, together with T&E and FVE which introduce commas into the main proof.
However, commas will still be introduced upon multiple applications of T—I(i), which
introduce separate strands for each of its concluding T—-formulae. So, each step consists
of single signed formulae separated by commas, each of which are to be eliminated by a
T&I or FVI rule, in the process of deriving the concluding formula of the system.

(b) For proofs of depth 1, there is only one n.p.p.

(c) For proofs of depth 2 or greater, there are two or more n.p.p.’s, one which finishes
by applying T—E(ii), all structures being with the index set {k}, one which finishes with
the conclusion of the subproof, and ones starting with the conclusion of the application
of T—E(ii) or an application of T—E(iii) and finishing with an application of T—E(iii)
into a emanating substructure, these additional n.p.p.’s being all with index set {j, ..., k}.
[Similarly, for the F—-rules, to be introduced in (ii) of the section.]

Proof.

(a) The only way to start a second n.p.p. is by application of a T—E(i) rule. Since T—1I(i)
is the only rule which puts a signed formula of form TA — B (or, indeed, any signed
formula) into the main proof, any subsequent rule can only introduce connectives as we
cannot eliminate TA — B in a normalized proof. Thus, T—E(i) cannot be applied from
the main proof, nor can any elimination rule.

(b) As for (a), the only way to start a second n.p.p. is by application of T—E(i), (ii) or
(iii), which respectively either does not apply or does not apply into a subproof of depth 1.

(c) Due to the Index Sets Lemma, there are exactly two index sets in the subproof. As
it is not possible to change an index set within an n.p.p., there are at least two n.p.p.’s
established through the application of T—E(ii) and possibly T—E(iii). It is not possible
to re-apply T—E(ii) once it is applied, but there can be multiple applications of T—E(iii),
each creating starting points for an n.p.p. So, there are two n.p.p.’s, with additional n.p.p.’s
being created for each initial and each subsequent application of T—E(iii).
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The N.P.P.’s in a Normalized Proof of the Theorem:

(A — B&E)&(C&D — C) — .AV (C&D) — BV C.

T(A - B&E)&(C&D — C) 3
7A — B&E, TC&D — Cyyy by ,I and [T&E]?
T(AV (C&D)y2y
| TATC&D,

TB&E; TCyy 9

TB;TCy 2

TBV C;TBV Cyy 9y by [TVI]?

TBV Cy 9y
TAV (C&D) — BV Cyyy
T(A — B&E)&(C&D — C) — . AV (C&D) — BV C)

(a) The main proof has a single signed formula n.p.p., i.e. the final theorem.

(b) The first subproof has one n.p.p., starting with the hypothesis and an elimination of &,
followed by the conclusion of the subproof which is an El-turning point. Note the absence
of introduction rules in this n.p.p.

(c) The second subproof has two n.p.p.’s. The top n.p.p. starts with the hypothesis,
eliminates the disjunction, yielding the El-turning structure TA;TC& D, which is also the
finishing structure. T—E(ii) is then applied to start the second n.p.p. whereupon the & is
eliminated yielding the El-turning point TB;TC. Disjunction is then introduced, reaching
the finishing point TB V C' via an application of ;E.

(ii) Preparing for Normalization.

To continue the normalization process, we need to introduce a new pair of rules. The
new rules, F—I and F—E, given below, are needed to prove the contraposition lemma,
essential for the proof of normalization. Indeed, they are the contraposed forms of the
respective T—E and T—I rules. We call this expanded natural deduction system NMC)
for the normalized system.

F—1I. From a derivation of TB,_ from TA, or FA,; from FB,, occurring within a sub-
proof, infer FA — By in the corresponding strand of proof in its immediate superproof.
[Think of the F—I rule as a contraposed T—E rule, but applied into its corresponding
strand of proof in an immediate subproof.]
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We code the signed formula T B, or FA,, with F—1.

All the signed formulae FA — B, introduced by F—I from the subproof, will form a
structure, separated by semicolons, with this structure lying in the corresponding strand
of proof of the subproof. These F—-formulae will also be preceded in this strand by another
F—-formula, eliminated (as below) by F—E. (These F—-formulae then form a cluster in
a similar manner to the clusters of T—-formulae, defined in §3(i).) Such signed formulae,
when there is more than one, will initiate new strands of proof.

We call this immediate subproof an F-subproof, as distinct from our usual proofs into which
T—E(ii) and T—E(iii) rules are applied, which we will now call T-subproofs.

We break F—1I up into two cases, aligning with those of T—E(ii) and T—E(iii):
(i) a={k}, k>2,1<j<k—-1,b={j,....k—1}and aUb={j,..., k}.
(i) a={j,..., k1, k>2,,1<j<k—-1,b={j,....k—1}and aUb=a={j,..., k}.

Just like T—E(ii) and T—E(iii), F—I(ii) and F—I(iii) must be applied en bloc to the signed
formulae of, respectively, a whole structure or an emanation of a substructure, maintaining
its common index set.

Note that a case (i), corresponding to T—E(i), is not needed as the F—-rules are introduced
as contrapositives to prove the following Contraposition Lemma, which is applied in the
proof of the Normalization Theorem in section (iii) to a subproof. Thus, F—-formulae can
only occur in subproofs and hence there are no F—-formulae in the main proof.

An F—I(ii) rule, applied en bloc to a 2-element structure.

TC, TEy
TD, TG, [F—I(ii)]

FC — D; FE — Ga—{k}

Here, we put {k} for a, a — {k} for b, and a for a Ub, in F—1.

F—FE. From FA — B,_(, infer an F-subproof with conclusion TB, on a hypothesis
TAgy, with FA — B,_ ;) occurring in its corresponding strand of proof, where:

(i) a={j,...,k}, k>2,1<j<k—1, and hence a — {k} = {j,...,k — 1}.

Note that there is no case (i) corresponding to that for T—1I(i) as there are no F—-formulae
in the main proof.
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[Think of the rule as a contraposed T—1I rule, but applied into an immediate subproof from
its corresponding strand of proof.]

We code the structure FC' — D, ..., (from the F—I rule) with F—E, as it is not until the
F-subproof is concluded, with its associated structure FC' — D, ...;, that we can say that
FA — B,_y is eliminated. Also, FC' — D, ... is the next structure after FA — B,_1y
in its strand of proof. Here, b will be a — {k}, as in the diagram below.

The F—E rule.
FA — Ba—{k}
T

TB,
FC — Da—{k} [F—>E]

The two F—-rules in tandem.

FA — Ba,{k}
- T

TC, TE,FJg,
TD,TG,FH, [F—1]

TB,
FC = D;FE — GiFH — Ju_qpy [F—E]

Again, for F—I, we put {k} for a, a — {k} for b and a for a Ub.

As we can see, F—I and F—E work in tandem, using the same F-subproof and its
corresponding strand of proof, and, in particular, F—E cannot be applied without F—I
also being applied into the same F-subproof. Also, it is the T—-rules that apply into
T-subproofs and the F—-rules that apply into F-subproofs; there is no mixing of T—- and
F—-rules, with the exception of T—E(i) which can apply into both T- and F-subproofs.
As with T-subproofs, the hypothesis TA of an F-subproof initiates a new thread or strand
of proof.

Before we go on, we expand on the notion of a deviation. We also need to count as
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deviations introductions and eliminations of a connective around ,I and ;E rule applications,
involving the three associated strands or threads of proof. Indeed, we need to remove these
and all the above deviations to establish a normal proof and to ensure, for the proof of the
subformula property to follow (see Theorem 4), that each formula in the overall proof is a
subformula of the final theorem.

Further, there are some complications where applications of the ,I and ;E rules occur
in between the introduction and elimination rules of an IE-turning point. The penultimate
signed formulae of the adjacent strands or threads of proof, prior to such a ,I or ;E rule,
could be the same or different, according to the particular introduction rule used, or one
could even be an introduction rule and the other an elimination rule. This latter case will
be specially considered in the proof of our normalization theorem (Theorem 3).

In the former case, where only introduction rules are applied prior to ,I or ;E, the
~-rules are fairly straightforward, but —-, &- and V-rules need some consideration, these
being attended to in the proof of Theorem 3 below.

In readiness for normalization, we next prove a lemma showing that one can contrapose
an entire subproof.

Lemma 3. (Contraposition Lemma)
In a standard overall proof of NMC, any subproof S with TB, derived from TAy; can be
contraposed to form a derivation S’ of FA, from FByy.

Proof. We replace each rule by its contraposed form, starting at the conclusion TB, and
working up the subproof until the premise T Ay, is reached. We replace the index sets a by
{k}, up to the last joint application of T—E(ii) and T—E(iii) across a whole structure, and
index sets {k} by a, leaving the remainder unchanged, for subproofs of depth 2 and higher.
(Here, the last applications of T—E(iii) become absorbed into applications of T—E(ii)
and any earlier residual application of T—E(ii) would become an application of T—E(iii).
Emanations would just go in the opposite direction.) Clearly, indices in proofs of depth
1 are unchanged. Any subproofs of S remain as they are, except for a possible change of
indices (see below). We contrapose each connective rule of S by keeping the connective as
is and changing its sign, T to F or F to T, and changing the type of rule from elimination
to introduction or from introduction to elimination. That is, T~I becomes F~E, FVE
becomes TVI, etc.

In order to replace TVE by FVI, we see that we need to replace a pair TA;TB, sepa-
rated by a semicolon, by FA FB, separated by a comma, so as to yield FA V B by FVI.
Similarly, F&F is replaced by T&I. Conversely, to replace T&I by F&E, we need to replace
the signed formulae TA,TB, separated by a comma, by the pair FA;FB, separated by
a semicolon. Similarly, FVI is replaced by TVE. Thus, we also need to interchange the
commas and semicolons as well, which means interchanging threads and strands. So, two
adjacent threads of proof are replaced by two adjacent strands of proof, both with the same
bracketing, and vice versa.
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Replacing TVE by F VI Replacing T&I by F&E. (Both with index change)
TAV B, (FA,FB) ) (TA,TB), | FA&B,
(TA;TB), | FAV By, TA&B, (FA;FB) )

These adjacent threads or strands of proof may need to be adjusted (by addition of
parametric signed formulae) to ensure that any application of T—E(ii) or F—I(ii) occurs
en bloc across the whole structure and any application of T—E(iii) or F—I(iii) occurs en
bloc across the appropriate emanation of a substructure to which T—E(ii) or F—I(ii) has
been applied.

To continue the replacement, the ;E rule would be replaced by the ,I rule, and vice
versa. Again, the commas and semicolons are interchanged.

Let us consider the —-formulae in some detail. First, we replace T—E(ii) by F—I(ii),
and conversely, with appropriate change of indices and with respect to a common sub-
proof, which is a T-subproof or an F-subproof, appropriately. This involves replacing a
structure consisting of TC' — D’s, separated by commas and bracketed accordingly, to
which T—E(ii) is applied (thus terminating the respective strands), by a structure con-
sisting of FC' — D’s, separated by semicolons and bracketed accordingly, to which F—I(ii)
is applied (thus initiating respective threads). The converse is just the reverse of this
procedure. If there is a change of indices required, i.e. from {k} to {j,...,k} or con-
versely, a corresponding change is made to the T- or F-subproof, i.e. from {k,k + 1} to
{j,..,k,k+ 1}, or conversely. This change would then be propagated in turn through its
following subproofs.

Replacing T—E(ii) by F—I(ii), with index set {j,...,k} replaced by {k}.

TA—)B,TC—)D{]’Jg} . TA,TC{kJrl}
TA, TC 41} : TB, TDy 11}

Further, T—E(iii) is replaced by F—I(iii) and conversely, in a similar manner as the re-
placement of T—E(ii) by F—I(ii) and conversely, but with index set {k + 1} of TA,TC
changed to {j,...,k+ 1} and {k, k + 1}, respectively.

Secondly, we replace T—I(ii) by F—E(ii) and conversely. Here, we replace TA — B,
introduced by T—1I(ii), by FA — B, eliminated by F—E(ii), and conversely. Again, the
common subproof is a T- or F-subproof, respectively.
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Replacing T—I1(ii) by F—E(ii), with index set {k} replaced by {j,..., k}.

TAgk1y FA = By . 1y
TAfk41y
TBigkr1}
TA — By TByj. .. k1)

We also need to consider applications of T—E and F—I into the subproof S. Since T—E(ii)
derives TD, from TCyy or FC, from FDyy, we just replace one of these by the other,
with the index sets being changed as required. F—I(ii) is similar. Further, T—E(i) derives
TD, from TC, or FC, from FD,., where c is either a or {k}. We replace one of these by
the other, changing both index sets as required.

(iii) The Normalization Theorem.

We can now prove the normalization result for NMC.
Theorem 3. (Normalization Theorem)
A is a theorem of MMC iff A is a theorem of a normalized NMC.

Proof.

L=-R. (The theorem is expressed as a two-way rule.)

(i) We start by eliminating pairs of introduction and elimination rules for each of the con-
nectives in turn, so as to eliminate the IE-turning points.

—.
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- T
TB,
...,TA—)B,...G_{k} [T%I]

.., TA(or FB), ...4
... TB(or FA), ... [T—E]

To eliminate TA — B from its thread of proof, we place the top proof of TB, from T A,
into the space between TA (or FB), with index b and TB (or FA), with index ¢, within
the parametric threads and strands of proof in the bottom proof below. Any use of FB
and FA invokes the Contraposition Lemma.

The en bloc application of T—E(ii) in the top proof is aligned in the bottom proof so
that an overall en bloc application of T—E(ii) in the bottom proof can include such an en
bloc application from the top proof. As required, any applications of T—E(iii) in the top
proof are made in the bottom proof en bloc across the same substructure emanating from
the same substructure to which the top T—E(ii) was applied but now within the bottom
proof.

However, in the event that T—E(iii) is the form of T—E of the bottom proof, the
en bloc application of T—E(ii) in the top proof is aligned in the bottom proof so that
the en bloc application of T—E(iii) in the bottom proof can incorporate such an en bloc
application of T—E(ii) from the top proof. Any applications of T—E(iii) in the top proof
are then made in the bottom proof en bloc across the same substructure but with the
emanation traced back through the TA to the application of T—E(ii) in the bottom proof.

We make the following adjustments to the indices. Three cases arise:

(I) a={k}, k=1,a—{k} =0, and so b = ¢, with T—E(i) applied.

() Let b be non-null. Replace the index sets {1} in the top proof by b (= ¢) and the other
individual indices 1 +n (n > 1) by max(b) + n throughout the subproofs of the top proof.
We just need to spell out the index changes for the —-rules.

[We call a rule application internal to a proof if all the signed formulae of the rule are all
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within the proof and its subproofs. A rule application is external if some signed formula is
outside the proof and its subproofs.]

If T—I or F—E applies (internally) to the top proof (or its contraposed form), there is
an appropriate index translation which replaces {1} by the whole index set b, {2} by
{maz(b) + 1}, and {1,2} by bU {max(b) + 1}. Further {3} is replaced by {max(b) + 2},
{2,3} by {max(b) + 1, max(b) + 2}, and {1,2,3} by b U maxz(b) + 1, max(b) + 2}, etc.

If T-E(ii), T—E(ii), F—I(ii) or F—I(iii) applies internally to the top proof the same
index translation as for T—I or F—E still works.

If T—E(i) applies (internally or externally) to an entailment of form TC — Dy there is a
simple repetition of index for C' and D.

(B) For the case where b is (), we replace {1} by 0 and put max(b) as 0 for the index
replacements. Le., {2} is replaced by {1}, {1,2} by {1}, {3} by {2}, {2,3} by {1,2}, and
{1,2,3} by {1, 2}, etc.

I a={j,...,k}, k>2, 1 <j< k-1, a—-{k} = {j...,k—1}, b = {k} and
¢ =4j,...,k} = a, with T—E(ii) applied. No index adjustment is needed, with
T—E(ii) being applied en bloc.

(1) a={j,...,.k}, k>2,1<j<k—-1,a—{k}={j...,k—1},b=c={j,....k} = a.
Since b = ¢ is non-null, we just replace each index {k} in the top proof by {j,...,k}
and the en bloc application of T—E(ii) by T—E(iii), maintaining the index set. Any

occurrence of the index set {k} in any subproofs of the top proof would also have to
be replaced by {j,...,k}.
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FC — Da—{k}'

TAb (OI" FBb)

TB. (or FA,) [F—I for FA— B]
FA—= B;...qo_ [F—E for FC— D]
- T

[F—I for FE—G]
TB,
FE—=Gi\...qsy  [F=E for FA-B]

To eliminate FA—B,_,, we follow a similar procedure to that for TA—B,_1, by
placing the proof of TB, from TAy; into the space between TA, and TB. in the strand
or thread of proof above, or between FBj, and F A, invoking the Contraposition Lemma.
However, unlike for T—, there are only two possible index changes, because F—-formulae
do not occur in the main proof.

() a ={j,....k}, k >2, 1< j< k-1 a—-{k} = {j....,k—1}, b = {k} and
c¢=1{J,...,k} = a, and there is no change in index sets.

(1) a={j,...,.k}, k>2,1<j<k—-1l,a—{k}={j....k—1},b=c={j,...,k} = a.

As for T—E(iii), we just replace each index {k} in the bottom proof by {j,...,k} and the
en bloc application of F—I(ii) by F—I(iii), maintaining the index set. Any occurrence of
the index set {k} in any subproofs of the bottom proof would also have to be replaced by
{j,.. -, k}.

Finally, FC—D is eliminated and (FE—G;...),... is introduced in the same strand or
thread of proof, where FE—G;. .., which is in the strand or thread of proof of FA— B, is
substituted for FA—B in FA—B;. ...

~. | FA, TA,
T~A, [T~ | FoA, [FA]
FA, [T~E] | TA, [F~E]
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Clearly, T~A, and F~A, are eliminable.

&.| TA,TB, FA, (or FB,)
TA&B, [T&I] | FA&B, [F&]]
TA, TB, [T&E)? | FA;FB, [F&E]

TA&B, is easily eliminated via either or both of TA, and TB,. If only one of TA, or
TB, is used, the other would be removed from the proof, together with its strand. If both
are used, the two strands would continue on. FA&B, is eliminated either by removing
the adjacent thread of proof initiated by FB or by removing the adjacent thread of proof
initiated by FA. We do not then need to apply ;E to eliminate the semicolon.

V.| TA, (or TB,) |FA,FB,
TAV B, [TVvI] |FAV B, [FVI]
TA;TB, [TVE] | FA FB, [FVE?

The eliminations of TAV B and FA V B are similar to that of FA&B and T A& B, respec-
tively.
(ii) As indicated above, we also need to consider the —-, &- and V-rules when I or ;E
occur, singly or multiply, in between the introduction and elimination rules of an IE-
turning point. As for ;E, replacing ,E in Brady [2006a], we repeat the elimination rules
and apply ;E afterwards. Here for ,I, we just repeat the introduction rules, whilst applying
I beforehand.

By the successive elimination of IE-turning points, as in (i) and (ii) above, we will reach
a stage where there are no deviations occurring in the overall proof and thus a normalized
proof in NMC is obtained. As such eliminations shrink the length of proofs, this will
contribute to the decidability argument given in §4.

R=-L. Proofs in a normalized NMC are still proofs in MMC, except for uses of the
F—-rules.
So, we consider F—I(ii), F—I(iii) and F—E(ii). To replace usage of F—E(ii), F—I(ii)
and F—I(iii), we take an F-subproof of TB, from TAy,, including F—1(ii) and F—1I(iii)
applications from TCyyy to TD, and TE(y to TG, etc., the F-subproof being used to
eliminate FA — B,_;). Thus, we introduce FC—D, FE—=G,... ,_ (), where a — {k} #
(). We then convert the F-subproof to a T-subproof, inserting a proof of TA— Ba_(1y
from T(C—D)&(E—G)&. ..oy We re-index this proof (if necessary) by putting a
as {1,2} and k as 2, so a — {k} as {1}, and replacing the other indices k + n by 2 +
n, for each n > 1, in its subproofs. By T—I(i), this then yields a proof of T(C —
D)&(E — G)&... — .A — By, which when applied to the original FA — B,_g yields
F(C — D)&(E — G)&...q_gxy by T—E(i). Repeated applications of F&E then yield
FC—D;FE — G;...q_{x), as required. This is illustrated below, with the inclusion of
F—1(iii) and T—E(iii).
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The Replacement of F—E(ii), F—I(ii) and F—I(iii).

FA — Ba,{k}
- T

TC, TE(,
TD, TG, [F—I(ii)]

TH,
TJ, [F—1(iii)]

TB,
FC — D;FE — GiFH — Ju_qy [F—E(ii)]
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T(C = D)&(E — G)&(H — J)q
| Tde
TC, TE{y
TD, TG{l,Z} [T%E(ll)}
TH 2
T2 [T—E(iii)]
TBy19)
TA — B{l} [T—)I(ii)]
T(C - D)&(E — G)&(H — J) - .A— By [T—I(1)]
FA — Ba—{k}
F(C = D)&(E — G)&(H — J)q—(r) [T—E(i)]
FC — D;FE — G;FH — J, [F&E]

The applications of F—E(ii), F—I(ii) and F—I(iii) above are replaced by the corresponding
derivation of T(C — D)&(E — G)&(H — J) — .A — By with the re-indexing, using T—I
rules, following this with the application of the T—E(i) and FE rules.

Note that the resultant proof in MMC is not a normal proof in that it features an
application of T—1I(i), followed by an application of T—E(i) to its conclusion. However,
the F-subproof is simply renamed as a T-subproof with the addition of a few standard
steps, and so this would not affect the decidability result to follow, allowing MMC to be
used for deciding theoremhood along with that of NMC.

4 Properties of the normalization of NMC.

We first prove the subformula property for NMC, which will hold the key to decidability.

Theorem 4. (Subformula Theorem)
For any theorem TAj of a normalized NMC, any formula instance B occurring as T B, or
FB, in this proof is a subformula of A.
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Proof. Given such a proof of TAp, we use induction on the depth k of the subproof
containing the formula instance B.

Depth = 0. By the N.P.P. Lemma, a normalized main proof has introduction rules only,
starting with T—-formulae, introduced by application of T—I(i). Hence, each formula in
the main proof will be a subformula of all later formulae in the proof, thus including the
final theorem A.

Depth = k + 1. As an induction assumption, we let all formula instances in subproofs of
depth k be subformulae of the final theorem A. This will include all T—- and F—-formulae,
which are the only formulae that can interact with subproofs S of depth k£ + 1. Indeed,
the hypothesis and conclusion of such a subproof S are immediate subformulae of one of
these T—- and F—-formulae of depth &, due to the application of a T—I rule. Further,
any application of T—E or F—I into S will be made up of immediate subformulae of T—-
or F—-formulae from depth k. By the N.P.P. Lemma, the rules of S applied in between
the hypothesis of S and a premise of a T—E or F—I rule or in between a conclusion of
a T—FE or F—I rule and a premise of a further T—E or F—I rule, or in between the
conclusion of a T—E or F—I rule and the conclusion of S will be a sequence of connective
elimination rules, followed by a sequence of connective introduction rules, with possible use
of the rules ,I and ;E, included to introduce strands of proof or to close threads of proof.
So, for each application of an elimination or introduction rule, the formula reached will be
a subformula of a formula in the preceding subproof of depth k, and hence a subformula
of the final theorem A. In the case where a T—- or F—-formula(e) is reached in S, as
the initial strand(s) of a T—-cluster, followed by an application of T—E or F—I into a
subproof of depth k42, the T—- or F—-formula(e) will be preceded by an elimination rule
involving a subformula(e) of A. Also, in the case where a T—- or F—-formula is reached
in S, as the latter part of a T—-cluster, preceded by an application of T—I or F—E from
a subproof of depth k+ 2, the T—- or F—-formula will be followed by an introduction rule
involving a subformula of A.

Thus, by induction on the depth of subproofs, we have shown that each formula instance
in the proof of the final theorem A is indeed a subformula of A.

Before moving on, we prove a corollary limiting the placement of the subformulae of a
final theorem within its proof. We first define the degree of a formula C, deg(C'), inductively
as follows:

(i) deg(p) = 0, for all propositional variables p.
(ii) If deg(C) = m then deg(~C) = m.
(iii) If deg(C) = m and deg(D) = n then deg(C&D) = deg(C V D) = max{m,n}.
) (

(iv) If deg(C) = m and deg(D) = n then deg(C — D) = max{m,n} + 1.
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We next inductively define the depth of a subformula occurrence C' in a formula A, d(C, A),
by starting with A and by considering each immediate subformula or pair of immediate
subformulae in turn, as follows:

(i
(ii

) d(A, A) =0.
)
(iif) If
)
)

d(A,
If d(~C, A) = n then d(C,A) =n

d(
d(C&D, A) =n then d(C,A) =d(D,A) =n
(iv) If d(C VvV D, A) = n then d(C, A) = d(D,A) = n.
fd(

(v) If d(C — D, A) =n then d(C,A) =d(D,A) =n+1.

It is easy to show that the maximum depth of a subformula occurrence in a formula A is
the degree of A, i.e. max{d(C,A) : C is a subformula occurrence in A} = deg(A).

Corollary. If C' is a subformula instance occurring in a structure of index a in a normalized
proof of a final theorem TAy in NMC then this occurrence of C' lies in a subproof whose
depth, maz(a), is equal to d(C, A). Here, we take maz(()) to be 0, as the depth of the
main proof is 0. [This aligns the two concepts of ‘depth’.]

Proof. Tt is already clear that in a subproof, with hypothesis TC3y, the only index sets that
can be generated by the rules of NMC are {k} and {j,...,k} (with 1 < j <k — 1), both
with a maximum of k, the depth of the subproof. Also, in the main proof, the only index
set is (), and max () = 0. So, it remains to show that the depth of any proof containing C
is equal to d(C, A). We proceed by induction on the depth of proofs.
(i) Let C occur in the main proof. Since only ~-, &- and V-rules are used within the proof,
together with the depth of any such formula C' in A remains at 0.
(ii) For all formulae D occurring in proofs of depth k, let k = d(D, A). We let C' occur
in a subproof S of depth k + 1. The hypothesis and conclusion of S are of depth k£ + 1 in
A, since their generating entailment formula (through T—I or F—E) is of depth & in A.
The application of ~-, &- and V-rules in S do not change the depth of their formulae in
A, and neither do ,I nor ;E. Also, the T—E and F—1I rules, when applied into S, apply to
formulae of depth £+ 1 in A, as the entailments of these rules are of depth k. Further, the
components of —-formulae in S do not occur in .S, but may occur in a further subproof.
So, any formula C, occurring in S, must have a depth of £k + 1 in A.

Thus, by induction on the depth of proofs, all the formulae occurring in a proof of
depth k have a subformula depth of £ in A.

Theorem 5. (Decidability Theorem)
MC is decidable.

Proof. In order to prove decidability, we need to ensure there is a finite limit on the number
of overall (finite) proof attempts for a final formula A in the main proof. Such a finite limit
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can be determined by restricting such proof attempts by using key properties of the proofs
of theorems in NMC. The previous two results are critical. Theorem 4 shows that any
formulae that can appear in a proof of a final theorem A are restricted to those that are
subformulae of A. The Corollary to Theorem 4 shows us that any such subformula can
only appear at a depth of subproof equal to its depth in A. So, if the degree of A is d then
d is the maximum depth of subformula occurrences in A and hence subproofs are limited
to those with a depth less than or equal to d. This also limits the usable index sets to
complete subsets of {1,...,d}.

We define the length of a structure in a subproof S as the number of signed formulae in
the structure. Due to the N.P.P. Lemma, this length is limited by one plus the number of
applications of either the connective rules, TVE or F&E for the elimination phases applied
to subformula occurrences either of the hypothesis of the subproof containing the structure
or of the consequents of T—E or F—I rules applied to their immediate superproof, or
subsequent connective rules T&I or FVI for the introduction phases applied to subformula
occurrences either of the antecedents of T—E or F—I rules applied to their immediate
superproof or of the conclusion of the subproof containing the structure. So, the length
of a structure in a subproof of depth k is limited by one plus the number of conjunctions
and disjunctions of depth k in the final theorem A. Further, the number of structures in a
subproof S of depth k is limited by the number of possible signed formulae of depth k in
A, and determined by the T-clusters occurring in its immediate superproof, which indeed
supply the starting and finishing structures of all the n.p.p.’s of the subproof S. Note here
that repetition of a structure in a subproof induces an otiose piece of proof. Further, the
number of possible subproofs of depth k, which are sequences of indexed structures with
index sets of form: {k} and {j,...,k}, is limited. Note too that the repeating of an entire
subproof of depth k in an overall proof attempt is otiose. Hence, the number of overall
proof attempts for the final theorem A is limited and the logic MC is decidable.

This decidability result is new as it differs from §12.6 of [2003], essentially repeated in
[2003a], where the Routley-Meyer semantics is used to show the decidability of MC plus
the distribution axiom, viz. DJY. (Indeed, such a distribution axiom cannot be removed
from the Routley-Meyer semantics. See Brady [2022] on this.) Further, the use of Gentzen
systems to prove decidability is problematic due to the Gentzenized form of the Conjunctive
Syllogism axiom A10 using fusion , viz. Ao B — Ao (Ao B), being a form of contraction,
where o satisfies the two-way rule, Ao B - C < A — .B — C. This can be better seen
in its deductive equivalent, Ao (Ao B) - C = Ao B — C, with contraction occurring on
the antecedent side.
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