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Abstract

Brady [4] used the matrix for Meyer’s crystal lattice CL to build a hi-
erarchical model structure for his deep relevant logic DRd. In this paper I
modify the matrix for CL so as to define a connexive conditional. In doing
so, I arrive at a family of connexive logics satisfying the depth relevance
property. This results in a way to satisfactorily combine connexivity and
relevance without trivializing the logic and without validating unappealing
theorems.
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1 Introduction

Ross Brady devoted decades of his life to developing a logic which could sup-
port näıve set theory. Näıve set theory [62] is characterized by the Unrestricted
Comprehension axiom that stems from the foundational works of Frege, Cantor
and Dedekind. This axiom guarantees that there exists a set whose elements are
exactly those which satisfy a given property, for whatever property expressible
in the language —which lead to disaster in the case of Frege, who used classical
logic as a basis of his set theory. Unlike Frege, Brady’s efforts focused on relevant
logics of the strongly paraconsistent kind, i.e. those which, besides being able to
tolerate contradictions without trivializing the theory, were able to work with the
Unrestricted Comprehension axiom ∃y∀x(x ∈ y ↔ φx), for arbitrary properties
φ, without falling prey to Curry’s paradox [48]. The latter is an argument with
many variants showing that, from the Unrestricted Comprehension axiom and
well-known principles for →, like Contraction, (A → (A → B)) → (A → B), one
can derive an arbitrary formula A, thus trivializing any näıve set theory with the
logical principles involved in such reasoning [45, pp.289-90].

Relevant logics like T, R or E validate Contraction and the other logical
principles involved in Curry’s paradox. So none of these well-known systems
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could be a non-trivial foundation for näıve set theory. This lead Brady to explore
deep relevant logics, i.e. those that guarantee that any implicative formula which
is a theorem is such that the antecedent shares a variable with the consequent
at the same depth. This property is stronger than that which T, R or E satisfy,
to wit, that the antecedent and consequent of an implicational theorem share at
least one propositional variable, regardless of depth. The concept of depth of
a subformula in a formula was key to separate such relevant systems in a non
ad hoc way so that one could invalidate crucial principles in Curry’s paradox,
like Contraction. Thus, Brady developed his universal logic DJdQ, both deep
relevant and strongly paraconsistent, and built a non-trivial näıve set theory on
it [9].1

Depth relevance is an excellent means to obtain relevant logics. In fact, the
notion of relevance between antecedents and consequents is a particular case of
the sort of relations one may impose on sound implications. The family of socia-
tive logics [50], which includes, for instance, relevant logics and connexive logics,
consists of those systems whose implication connective requires that antecedent
and consequent are associated through a special kind of relation which bears
on their implicational grounds. While the relevance relation is a positive sort
of relation demanding, at least, that all propositions in an antecedent are used
to derive the consequent, other relations one can impose on conditionals can be
negative, like the one we find in connexive logics. It is known that Chrysippus’s
account of a sound implication, championed by McCall as the standard view of
connexive implication [28, p.8-12], demands that the negation of the consequent
is incompatible with the antecedent. Hence, one can naturally expect an overlap
between connexive and relevant implication by imposing both sorts of relations
to valid implicative formulas: relevance between antecedent and consequent, and
incompatibility between antecedent and the negation of the consequent. How-
ever, combining relevance and connexivity is not a straightforward task, since
either triviality, inconsistency or unreasonable theorems may arise in attempting
so [34], [45, pp.245-6], [54].

But depth relevance, as it turns out, is not exclusive to the weaker systems
of relevant logics, ranging from the basic system B to Brady’s DRd from [4].
Méndez and Robles’ work on weak relevant matrices [32] and weak relevant model
structures [41] shows that there are logics satisfying the depth relevance property
which neither include nor are included in RM —an important extension of R,
which sits in the stronger side of the spectrum of relevant logics and contains
the weaker systems mentioned above. Thus, depth relevance is a more general
property than originally thought. As a consequence of these results, one can have
deep relevant systems that are also connexive; moreover, one can obtain systems
of this sort which avoid triviality and avoid validating unreasonable theorems,
thus providing a class of sociative logics that satisfactorily combine relevance and
connexivity.

1For proofs on the non-triviality of näıve set theory based on a stronger logic DSQ which
contains DJdQ, see [7]; see also [3] and [10].
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In this paper I study how to obtain logical systems with the depth relevance
property that also validate the characteristic connexive theses. Indeed, such
theses respect the depth relevance property, so it is natural to ask if they can be
added to logics like DRd with as few modifications as possible so as to get a non-
trivial logic which would also result in a strongly paraconsistent logic suitable
for a foundation of näıve set theory. In Section 2, I introduce the necessary
background and the model structures helping one to establish depth relevance;
and in Section 3, I provide a slight modification to such model structures that
allows for connexive theses to hold in the background logic. In the conclusions
section, I briefly discuss the prospects of connexive näıve set theory, which I will
thoroughly analyze in a future paper.

2 Depth relevance and wr-model structures

In [4], Brady presented the logic DRd, whose axioms and rules of derivation
are as follows —where ∼, ∧ and → are primitive connectives, p, q, r, . . . are

sentential variables, A,B,C, . . . are arbitrary formulas, A ∨ B
df
=∼ (∼A∧ ∼B)

and A ↔ B
df
= (A → B) ∧ (B → A):

A1. ⊢ A → A
A2. ⊢ (A ∧B) → A
A3. ⊢ (A ∧B) → B
A4. ⊢ ((A → B) ∧ (A → C)) → (A → (B ∧ C))
A5. ⊢ ((A → B) ∧ (B → C)) → (A → C)
A6. ⊢ (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))
A7. ⊢∼∼A → A
A8. ⊢ (A →∼B) → (B →∼A)
A9. ⊢ A∨ ∼A
R1. ⊢ A, ⊢ A → B ∴ ⊢ B
R2. ⊢ A, ⊢ B ∴ ⊢ A ∧B
R3. ⊢ C ∨ A, ⊢ C ∨ (A → B) ∴ ⊢ C ∨B
R4. ⊢ C ∨ A ∴ ⊢ C∨ ∼(A →∼A)
R5. ⊢ E ∨ (A → B), ⊢ E ∨ (C → D) ∴ ⊢ E ∨ ((B → C) → (A → D))

Rules R3.–R5. are called disjunctive rules and the superscript d in DRd indicates
that (some of) these are included in the logic; so DR is just DRd without
disjunctive rules. This convention will be used throughout the paper for other
systems.

Brady’s main goal was to introduce a family of relevant logics which he calls
strongly paraconsistent —i.e. which reject the inference ⊢ A, ⊢∼A ∴⊢ B and
which, moreover, reject the Contraction law ⊢ (A → (A → B)) → (A → B).
Such family of logics provides suitable logical bases for näıve set theory [62]
because, on the one hand, the Unrestricted Comprehension axiom guarantees the
existence of contradictory sets (like Russell’s), and, on the other hand, rejecting
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Contraction is key to dissolve Curry’s paradox [48] —which trivializes even simply
paraconsistent näıve set theories. Systems on the vecinity of DK and DJ are
Brady’s preferred strongly paraconsistent logics for this endeavour —see [9].

It is traditionally posited that a necessary condition for relevant logics is the
Variable Sharing Property (VSP).

Definition 2.1 (Variable-sharing property (VSP)). A logic L has the variable-
sharing property (VSP) iff, if A → B is a theorem of L, then A and B share at
least one propositional variable.

However, relevant logics like E, R and T have the VSP but validate Contraction
and other schemas like Pseudo-Modus Ponens, ⊢ (A ∧ (A → B)) → B, which
allow Curry’s paradox to be derived in näıve set theory. A stronger property
is needed to keep variable sharing but reject Contraction and Pseudo-Modus
Ponens. This is Brady’s depth relevance property.

Definition 2.2 (Depth relevance property (DRP)). A logic L has the depth
relevance property (DRP) iff, if A → B is a theorem of L, then A and B share
at least one propositional variable at the same depth.

Roughly, the depth of an occurrence of a subformula B in a formula A is the
number of nested conditionals required to reach the occurrence of B in A. We
can make this (and the related notion of the degree of a formula) precise via the
following inductive definitions.

Remark 2.1. I follow Robles and Méndez in the notational practice of distin-
guishing conditionals that are sensitive to depth of subformulas in a formula
against those which are not. I write ↠ for depth-sensitive conditionals and →
for those which do not take depth into account.

Definition 2.3 (Degree of formulas). Let deg(A) be read as “the degree of
formula A” and denote a natural number n ≥ 0. We define deg inductively:

1. If A is a propositional variable, then deg(A) = 0
2. If A is of the form ∼B and deg(B) = n, then deg(A) = n
3. If A is of the form B ∨ C (or B ∧ C or B → C) and deg(B) = m and

deg(C) = n, then deg(A) = max{m,n}
4. If A is of the form B ↠ C and deg(B) = m and deg(C) = n, then

deg(A) = max{m,n} + 1

Definition 2.4 (Depth of a subformula within a formula). Let d[X, Y ] be read
as “the depth of the subformula X within the formula Y ” and denote a natural
number n ≥ 0. We define d inductively:

1. d[A,A] = 0
2. If d[∼B,A] = n, then d[B,A] = n
3. If d[B∧C,A] = n (or d[B∨C,A] = n or d[B → C,A] = n), then d[B,A] =

d[C,A] = n
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4. If d[B ↠ C,A] = n, then d[B,A] = d[C,A] = n + 1

Example 2.1. Let X be the formula p ↠ ((p ↠ q) ↠ q), an instance of
Assertion, A ↠ ((A ↠ B) ↠ B). Then deg(p) = 0 = deg(q) so deg(p ↠
q) = 1, deg((p ↠ q) ↠ q) = 2 and deg(X) = 3. Let us enumerate each
occurrence of p and q in X: p1 ↠ ((p2 ↠ q1) ↠ q2). We have, d[X,X] = 0 so
d[p1, X] = 1 = d[(p2 ↠ q1) ↠ q2, X] and then d[p2 ↠ q1, X] = 2 = d[q2, X] so
d[p2, X] = 3 = d[q1, X]. We see that the antecedent of X shares one variable
with its consequent, to wit, p; however, p has depth 1 in the antecedent and
depth 3 in the consequent. So while X, or, more generally, Assertion, is valid in
relevant systems like R, it cannot be valid in systems with the DRP, like DRd.

In fact, the DRP implies two strong properties from relevant systems, to wit:

Definition 2.5 (Ackermann property (AP)). A logic L has the Ackermann prop-
erty (AP) if, for any A,B,C, the formula A → (B → C) is unprovable in L if A
does not contain an implicative formula.

Definition 2.6 (Converse Ackermann property (CAP)). A logic L has the con-
verse Ackermann property (CAP) if, for any A,B,C, the formula (A → B) → C
is unprovable in L if C does not contain an implicative formula.

Theorem 2.1. Let L be a logic with the DRP. Then, L has the AP and the
CAP. [41, p.111]

The original semantics for DRd depends on the logical matrix for Meyer’s
crystal lattice CL [56, p.98]. We first give some useful definitions for logical
matrices, following [32].

Definition 2.7 (Logical matrix). A logical matrix M is a structure

(K,T, F, f∼, f∧, f∨, f→)

where: (1) K is a set; (2) T and F are non-empty subsets of K such that
T ∪ F = K and T ∩ F = ∅; and (3) f∧, f∨, f→ are binary functions (distinct of
each other) on K, and f∼ is a unary function on K.

Intuitively, K is a set of truth values, T is the set of designated values, F is
the set of non-designated values, and the f ’s are truth functions defined on Kn

interpreting the connective appearing in them as a subindex, where n ≥ 0 is the
arity of the connective. Note that it is not necessary for a matrix to have all
or exactly those connectives represented by the f ’s above for it to be a logical
matrix.

Definition 2.8. Let M be a logical matrix. M verifies a formula A iff for any
assignment, vm, of elements of K to the propositional variables of A, vm(A) ∈ T .
M falsifies A iff M does not verify A.
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Definition 2.9. Let ⊢ A1, . . . ,⊢ An ∴⊢ B be a rule of derivation, and let M be
a logical matrix. Then, M verifies ⊢ A1, . . . ,⊢ An ∴⊢ B iff for any assignment,
vm, of elements of K to the variables of A1, . . . , An and B, if vm(A1) ∈ T , . . . ,
vm(An) ∈ T , then vm(B) ∈ T . M falsifies ⊢ A1, . . . ,⊢ An ∴⊢ B iff M does not
verify ⊢ A1, . . . ,⊢ An ∴⊢ B.

Definition 2.10. Let M be a logical matrix and L be a logic. M verifies L iff M

verifies all axioms and rules of derivation of L.

The logical matrix MCL for Meyer’s crystal lattice CL [56, p.98] has K =
{0, 1, 2, 3, 4, 5}, T = {0, 1, 2, 3, 4}, F = {5}, and the truth functions for its
connectives are defined through the following tables.

→ 0 1 2 3 4 5 ∼
*0 0 5 5 5 5 5 5
*1 0 4 5 5 5 5 4
*2 0 2 2 5 5 5 2
*3 0 3 5 3 5 5 3
*4 0 1 2 3 4 5 1
5 0 0 0 0 0 0 0

∧ 0 1 2 3 4 5
*0 0 1 2 3 4 5
*1 1 1 2 3 4 5
*2 2 2 2 4 4 5
*3 3 3 4 3 4 5
*4 4 4 4 4 4 5
5 5 5 5 5 5 5

∨ 0 1 2 3 4 5
*0 0 0 0 0 0 0
*1 0 1 1 1 1 1
*2 0 1 2 1 2 2
*3 0 1 1 3 3 3
*4 0 1 2 3 4 4
5 0 1 2 3 4 5

The Hasse diagram below explains the name of this algebraic structure.

0

1

2 3

4

5

One neat property of MCL is that it validates the theorems of R and can be
used to show that a logic has the VSP. In [41, p.114], this matrix has been shown
to be a special case of the more general notion of weak relevant matrix.
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Definition 2.11 (wr-matrix). Let M be a logical matrix in which xi, xr and xF

are elements of K distinct of each other such that xF ∈ F and the following
conditions are fulfilled:

1. f∧(xi, xi) = f∨(xi, xi) = f→(xi, xi) = f∼(xi) = xi

2. f∧(xr, xr) = f∨(xr, xr) = f→(xr, xr) = f∼(xr) = xr

3. f→(xi, xr) = xF

It is said that M is a weak relevant matrix (wr-matrix, for short).

Proposition 2.1. MCL is a wr-matrix.

Proof. We take xi = 2, xr = 3 and xF = 5; these satisfy the conditions for a
wr-matrix.

Since MCL verifies R, from the previous proposition and the following theorem
we know that R has the VSP.

Theorem 2.2. Let M be a wr-matrix and let L be a logic verified by M. Then L
has the VSP. [41, p.112]

DRd uses a hierarchical model structure defined as an indexed set of CL-
matrices. This allows to filter the theorems of R in a way that we only keep
those that satisfy the DRP. Again, since MCL is a wr-matrix, we may follow [41,
p.114] in defining the general corresponding notion of wr-model structure.

Definition 2.12 (wr-model structure). Let M be a wr-matrix. A wr-model struc-
ture JMK is the set {M0, M1, M2, . . . , Mn, . . . Mω}, where M0, M1, M2, . . . , Mn, . . . Mω are all
identical matrices to the wr-matrix M.

The idea is to have a hierarchy of levels, all of which match possible depths
of subformulas in a formula. At each level, a corresponding valuation and inter-
pretation of propositional variables and formulas can be given, so as to evaluate
subformulas taking their depth into account. This is made precise as follows.

Definition 2.13 (Valuations and interpretations in a wr-model structure). A
valuation v in a wr-model structure JMK consists of a valuation vj for all propo-
sitional variables, for each wr-matrix Mj (0 ≤ j ≤ ω). Each vj assigns one of the
elements of K to each propositional variable. Then, each valuation v is extended
to an interpretation I consisting of the interpretations Ij for all atomic formulas,
for all j (0 ≤ j ≤ ω), which are given as follows: for all propositional variables p
and formulas A, B,

1. Ij(p) = vj(p)
2. Ij(∼A) =∼(Ij(A))
3. Ij(A ∧B) = Ij(A) ∧ Ij(B)
4. Ij(A ∨B) = Ij(A) ∨ Ij(B)
5. Ij(A → B) = Ij(A) → Ij(B)
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where 1.–5. are evaluated according to the wr-matrix M. In addition, formulas of
the form A ↠ B are evaluated as follows:

6.1. for j = 0, I0(A ↠ B) = xT , where xT is some designated value we fix for
all interpretations

6.2. for 0 < j < ω, Ij(A ↠ B) = Ij−1(A → B)
6.3. for j = ω, Iω(A ↠ B) ∈ T iff Ij(A → B) ∈ T for all j (0 ≤ j ≤ ω).

Clauses 1.–5. for interpretations in a wr-model only ask for us to use the
valuations of the propositional variables at the corresponding level and the truth
tables from M, so no difference, particularly regarding →, will result between
simply using M in the regular way as oppossed to using the wr-model structure.
The difference arises when we take 6.1.–6.3. into account, whose effect is that
of turning → into a depth-sensitive connective ↠ that can now be evaluated
together with other valuations and interpretations of a different depth level.
This is what allows DRd to filter those R-theorems that do not satisfy the DRP.

Finally, validity in a wr-model structure is defined as follows.

Definition 2.14 (Validity in a wr-model structure). Let JMK be a wr-model
structure, let B1, . . . , Bn, A be formulas and let L be a logic. A is valid in JMK,
i.e. |=JMK A, iff Iω(A) ∈ T for all valuations v. The rule ⊢ B1, . . . ,⊢ Bn ∴⊢ A
preserves JMK-validity iff, if Iω(B1) ∈ T, . . . , Iω(Bn) ∈ T , then Iω(A) ∈ T for all
valuations v. Finally, JMK verifies L iff all axioms of L are JMK-valid and all rules
of L preserve JMK-validity.

Using the above definitions and notation, we say that Brady’s DRd is verified
precisely by the wr-model structure JMCLK = {MCL

0 , MCL
1 , MCL

2 , . . . , MCL
n , . . . MCL

ω }.
Thus, though Contraction and Pseudo-Modus Ponens always receive designated
values using MCL, they do not if we check for validity in JMCLK. In fact, Robles
and Méndez generalize Brady’s Lemma 2 from [4] to get such counterexamples
as follows.

Lemma 2.1. Let JMK be a wr-model structure and let A ↠ B be a formula such
that A and B do not share a propositional variable at the same depth. Then
there is some interpretation Ik in JMK such that for each subformula C of A,
Ik(C) = xi and, for each subformula D of B, Ik(D) = xr.

Proof. The result is a particular case of the more general Lemma 5.6 from [41,
p.115].

Example 2.2. Let X be the formula (p∧ (p ↠ q)) ↠ q, an instance of Pseudo-
Modus Ponens. Let A be p ∧ (p ↠ q), the antecedent of X; and let B be q, the
consequent of X. We have deg(X) = 2, deg(A) = 1, deg(B) = 0, d[p1, A] = 0,
d[p2, A] = 1 = d[q, A] and d[q, B] = 0 —where p1 and p2 are, respectively, the
first and the second occurrence of p in A. We use JMCLK to provide a valuation
vm−d−1, where m = deg(X) and d is the depth of each propositional variable in
A or in B. Since Lemma 2.1 is always witnessed by k = deg(A ↠ B) − 1, this
valuation can be extended to an interpretation Im−1 that assigns 2 to A and 3
to B, so that the value of X is 5, thus:
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1. v2−1−1(p) = 2 = v2−1−1(q)
2. v2−0−1(p) = 2 and v2−0−1(q) = 3

Then I0(p → q) = 2 so I1(p ↠ q) = 2, and then I1(p∧ (p ↠ q)) = 2, but we also
have I1(q) = 3 so I1((p ∧ (p ↠ q)) → q) = 5, whence I2((p ∧ (p ↠ q)) ↠ q) = 5.
So Pseudo-Modus Ponens is invalid in DRd.

In turn, Lemma 2.1 allows Robles and Méndez to generalize Brady’s Theo-
rem 1 from [4] as the following theorem which will come in handy in the next
section. Since Lemma 2.1 gives counterexamples to implicational formulas that
do not share a variable between antecedent and consequent at the same depth,
by contraposing then one implicational formula with no counterexamples will be
such that antecedent and consequent share a variable at the same depth.

Theorem 2.3. Let JMK be a wr-model structure and suppose |=JMK A ↠ B. Then,
A and B share at least one propositional variable at the same depth. [41, p.116]

So to show that a logic L has the DRP, one only needs to show that L is verified
by a wr-model structure JMK.

3 Connexive wr-model structures

Though the origins of what we now call connexive logic go back to the work
of ancient and Medieval philosophers, Storrs McCall brought this topic to the
attention of modern logicians in his [28]. There, the idea of connexive implication
is attributed to Chrysippus, and the following passage from Sextus Empiricus is
provided as a characterization of the idea of connexive implication [24, p.129]:

And those who introduce the notion of connection say that a condi-
tional is sound when the contradictory of its consequent is incompat-
ible with its antecedent.

So the notion of connection is cashed out in terms of (in)compatibility. Where
◦ is a primitive connective representing compatibility, we have that A → B if
and only if ∼ (A◦ ∼B). Philosophical stances regarding this notion of compat-
ibility lead to interesting logical theses. For instance, (1) if every proposition
is compatible with itself —as Nelson argues [35, pp. 440, 447]—, i.e. if A ◦ A
for every A, then ∼ (A →∼A) for every A; and (2) if a proposition implies an-
other one, then these are compatible —as McCall suggests in [1, p.435]—, i.e. if
(A → B) → (A ◦B) for every A and every B, then (A → B) →∼(A →∼B) for
every A and every B. Indeed, besides their philosophical appeal, these theses are
invalid in classical logic; so any logical system including such principles would
be a contra-classical logic [19].

A simple, working definition of connexive logics, strongly supported by Wans-
ing and some of his collaborators [57], [59], [58], [37], [36] after some ideas of
McCall [29], [31], is the following:
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Definition 3.1. A logic L with a conditional > and a negation − is connexive
iff the following hold [57]:

(AT) Aristotle’s Thesis : ⊢L −(A > −A)
(AT’) Variant of Aristotle’s Thesis : ⊢L −(−A > A)
(BT) Boethius’ Thesis : ⊢L (A > B) > −(A > −B)

(BT’) Variant of Boethius’ Thesis : ⊢L (A > −B) > −(A > B)
(NSC) Non-symmetry of the conditional : ̸⊢L (A > B) > (B > A)

That definition will be used in this paper for the sake of simplicity. Keep in
mind, however, that things are not as simple as that definition suggests, since
there may be good reasons to think that a logic is still connexive if (i) it satisfies
some but not all of (AT), (AT’), (BT), (BT’) [20], [15], [38]; or (ii) if instead or
besides of Aristotle’s and Boethius’ theses some other contra-classical theorems
are demanded [51], [26], [23]; or (iii) if more than one kind of negation or more
than one kind of conditional can be involved in expressing connexive theses [39],
[40], [14]; or (iv) if Aristotle’s and Boethius’ theses are to be restricted to special
kinds of propositions [22]; or (v) if some requirements should be met at the
metatheory [21]; or (vi) if some of the connexive theses should be expressed in
rule form instead of implicational form [60]; or (vii) if instead of (NSC) some
other schema expressing the non-symmetry of a conditional is demanded; etc.2

The connexive theses have an intuitive appeal, specially for relevant logicians
since it seems that this idea of connection between antecedents and consequents
in a sound implication is closely related to the concept of logical relevance. Evi-
dence of this interest can be found in [46], [1, §29.8], [33], [43], [45, §2.4], [34], [47],
[8], [50], [51], [52, §9.7–8], [27], for instance, all authored by prominent relevant
logicians.

However, connexivity and logical relevance are not easy to combine. Though
both belong to the broader family of sociative logics [50], relevant logics and
connexive logics can bring undesirable results when put together. As shown by
Routley and Montgomery [46], Mortensen [34], and the authors of [45], there are
three recurrent problems in combining them:

1. Contradictoriness ; e.g. B plus Aristotle’s Thesis is a contradictory logic.
2. Trivialization; e.g. R plus Aristotle’s Thesis is a trivial logic.
3. Validating the negation of every implication; e.g. E plus Aristotle validates

∼(A → B).

Out of the three main problems, the most pressing one is that of triviality.
This result works for very strong relevant systems like R that include, besides
the extensional conjunction ∧, an intensional conjunction ◦ that residuates the
relevant implication. So non-trivial systems combining logical relevance and

2See [59] for the most recent attempt at delimiting what connexive logic is and what termi-
nology shoud be adopted. But proceed with caution, for the classifications and decisions made
there are far from being established opinions.
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connexivity are generally expected to be weaker than R. On the other side of
the spectrum, the basic relevant logic B, of which R and every other standard
relevant system in between is an extension, will deliver contradictory theorems if
connexive theses are introduced; so if one wants to combine logical relevance and
connexivity, one should be prepared to embrace contradictory logics. This is not
to be feared by logicians studying connexivity, like Wansing, whose well-known
system C and its extensions are contradictory, yet not relevant logics —see [37],
for instance.

To avoid validating all negated implications, a common result in logics com-
bining relevance and connexivity, like EA and M3V [34], [13], some alterna-
tives are available, as noted in [54]. Following Tedder’s analysis of the proof of
∼ (A → B) in [45, pp.245-6], one could abandon Rule Contraposition, ⊢ A →
B ∴⊢∼ B →∼ A, or Rule Prefixing, ⊢ A → B ∴⊢ (C → A) → (C → B),
or Rule Suffixing, ⊢ A → B ∴⊢ (B → C) → (A → C), or Rule Transitivity,
⊢ A → B, ⊢ B → C ∴⊢ A → C. Each of these options could be seen to be a
high price to pay for relevant logicians.3 But on the interest of combining logical
relevance and connexivity without validating all negated implications, in what
follows I will be abandoning Rule Suffixing.

Observe that (BT) and (BT’) are conditional formulas in which the an-
tecedent shares a variable with the consequent at the same depth.4 That the
connexive theses satisfy the DRP is an intriguing feature that invites us to ex-
plore whether deep relevant logics admit the connexive theses without trivializing
and without delivering unappealing results like the negation of every implication
—and that is what will be explored here.

In order to show how depth relevance can mix with connexivity, we now define
cCL —a connexive variant of CL. The logical matrix McCL is defined exactly as
MCL, except that f→ has the following table:

→ 0 1 2 3 4 5
*0 0 5 5 5 5 5
*1 0 4 5 5 5 5
*2 0 2 2 5 5 5
*3 0 3 5 3 5 5
*4 0 1 2 3 4 5
5 3 3 3 3 3 3

3As argued in [54], any of these alternatives implies losing tonicity features of →, as per
the gaggle theoretic framework [12]. Note that other options are available to stop the proof of
∼(A → B), like dropping Uniform Substitution.

4In fact, they satisfy a stronger property: all variables in the antecedent are shared in the
consequent at the same depth. We may generalize this as the following property: A logic L has
the strict depth relevance property (SDRP) iff, if A → B is a theorem of L, then all variables in
A occur in B at the same depth. Clearly the SDRP is very strong, for it would invalidate most
implicational theses of standard relevant logics, including —crucially for negation-consistent
connexive logics— Simplification, (A ∧B) → A and (A ∧B) → B. Studying systems with the
SDRP can be appealing to connexive logicians but that will not be pursued here. Regarding
strong versions of the DRP, see [25] and [18]. Other variable-sharing properties more related
to connexivity can be found in [17].
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Remark 3.1. To obtain (AT), (AT’), (BT) and (BT’), one can adopt the well-
known technique of modifying the rows for non-designated antecedents so that
the value of the conditional is some designated value which is a fixed point of
the negation. In our case, the (5, x) row (for 0 ≤ x ≤ 5) of the table for the CL
conditional is modified so as to output 3 instead of 0.

Remark 3.2. To make sure that ∼(A → B) will not be valid using a connexive
and relevant conditional, at least one of the values in the column for the highest
of the designated values has to be a designated value which is not a fixed point
of negation. So the (x, 0) column (for 0 ≤ x ≤ 5) has value 0 at least once. This
is no modification to the conditional of CL though.

Remark 3.3. Having value 3 instead of 0 in column (x, 0) for 2 ≤ x ≤ 4 would
validate Aristotle’s Second Thesis, ⊢∼ ((A → B) ∧ (∼A → B)), but invalidate
Conjunctive Syllogism, ⊢ ((A → B)∧(B → C)) → (A → C), and Rule Prefixing.

These remarks should make it evident that there are many ways to obtain a
connexive version of CL; after all, the only modification we made to the condi-
tional from CL is that mentioned in Remark 3.1. The most evident alternative
would be that of using 2 instead of 3 in the places where we have made mod-
ifications.5 But other combinations are possible and we leave this for future
research. Based on the conditional of cCL, we have the following tables for the

biconditional and the compatibility connective, defined as A ◦B df
=∼(A →∼B).

↔ 0 1 2 3 4 5
*0 0 5 5 5 5 5
*1 5 4 5 5 5 5
*2 5 5 2 5 5 5
*3 5 5 5 3 5 5
*4 5 5 5 5 4 5
5 5 5 5 5 5 3

◦ 0 1 2 3 4 5
*0 0 0 0 0 0 5
*1 0 0 0 0 1 5
*2 0 0 2 0 2 5
*3 0 0 0 3 3 5
*4 0 1 2 3 4 5
5 3 3 3 3 3 3

The logic cCL is defined through the following axiomatization:

A1. ⊢ A → A
A2. ⊢ (A ∧B) → A
A3. ⊢ (A ∧B) → B
A4. ⊢ ((A → B) ∧ (A → C)) → (A → (B ∧ C))
A5. ⊢ ((A → C) ∧ (B → C)) → ((A ∨B) → C)
A6. ⊢ ((A → B) ∧ (B → C)) → (A → C)
A7. ⊢ (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))
A8. ⊢ A ∨ (A → B)
A9. ⊢ ((A → A) → B) → B

A10. ⊢ (A → (A → B)) → (A → B)

5Using 2 instead of 3 produces the same results I report in what follows, so I suspect these
are equivalent ways to define cCL.
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A11. ⊢ (A ∧ (A → B)) → B
A12. ⊢ (∼B ∧ (A → B)) →∼A
A13. ⊢∼∼A → A
A14. ⊢ A∨ ∼A
A15. ⊢ (A →∼A) →∼A
A16. ⊢ ((A → B) ∧ (A →∼B)) →∼A
A17. ⊢ (A →∼B) →∼(A → B)
R1. ⊢ A,⊢ A → B ∴⊢ B
R2. ⊢ A,⊢ B ∴⊢ A ∧B
R3. ⊢ A →∼B ∴⊢ B →∼A
R4. ⊢ A → B ∴ (C → A) → (C → B)

Proposition 3.1. The following are valid in McCL:

1. Identity : ⊢ A → A
2. Simplification: ⊢ (A ∧B) → A; and ⊢ (A ∧B) → B
3. Addition: ⊢ A → (A ∨B); and ⊢ B → (A ∨B)
4. ∧-Composition: ⊢ ((A → B) ∧ (A → C)) → (A → (B ∧ C))
5. ∨-Composition: ⊢ ((A → C) ∧ (B → C)) → ((A ∨B) → C)
6. Distribution: ⊢ (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))
7. Conjunctive Syllogism: ⊢ ((A → B) ∧ (B → C)) → (A → C)
8. Rule Transitivity : ⊢ A → B,⊢ B → C ∴⊢ A → C
9. Rule Prefixing : ⊢ A → B ∴⊢ (C → A) → (C → B)

10. Double Negation laws : ⊢∼∼A → A and ⊢ A →∼∼A
11. De Morgan laws : ⊢∼(A∧B) ↔ (∼A∨ ∼B) and ⊢∼(A∨B) ↔ (∼A∧ ∼B)
12. Rule Contraposition: ⊢ A →∼B ∴⊢ B →∼A and ⊢ A → B ∴⊢∼B →∼

A
13. Modus Ponens : ⊢ A,⊢ A → B ∴⊢ B
14. Modus Tollens : ⊢∼B,⊢ A → B ∴⊢∼A
15. Pseudo-Modus Ponens : ⊢ (A ∧ (A → B)) → B
16. Pseudo-Modus Tollens : ⊢ (∼B ∧ (A → B)) →∼A
17. Clavius : ⊢ (A →∼A) →∼A
18. Reductio: ⊢ ((A → B) ∧ (A →∼B)) →∼A
19. Specialized Assertion: ⊢ ((A → A) → B) → B
20. Contraction: ⊢ (A → (A → B)) → (A → B)
21. RM3-axiom: ⊢ A ∨ (A → B)
22. (AT), (AT’), (BT) and (BT’)
23. Abelard’s First Principle: ⊢∼((A → B) ∧ (A →∼B))
24. cRM3-axiom: ⊢ A∨ ∼(A → B)
25. Disjunctive rules : ⊢ C ∨ A,⊢ C ∨ (A → B) ∴⊢ C ∨ B; and ⊢ C ∨ A ∴⊢

C∨ ∼(A →∼A)

Proof. By inspection on McCL.6

6I verified this by writing a simple Python program available at https://github.com/

Fernando-Cano-Jorge/CL-cCL/tree/main
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In Proposition 3.1, theses 1.–9. are core principles of the positive fragment of
most relevant systems while 10.–12. are basic principles for negation. Note that
theses 15.–19. are implicative formulas that violate depth relevance, and also
that 20. goes against strong paraconsistency; we will return to these issues later
on. Finally, 22.–24. are connexive theses and 25. are disjunctive rules considered
by Brady in his deep relevant systems.

Proposition 3.2. The following are invalid in McCL:

1. Prefixing : ⊢ (A → B) → ((C → A) → (C → B))
2. Suffixing : ⊢ (A → B) → ((B → C) → (A → C))
3. Rule Suffixing : ⊢ (A → B) ∴⊢ (B → C) → (A → C)
4. Rule Affixing : ⊢ A → B,⊢ C → D ∴⊢ (B → C) → (A → D)
5. Disjunctive Rule Affixing : ⊢ E ∨ (A → B),⊢ E ∨ (C → D) ∴⊢ E ∨ ((B →

C) → (A → D))
6. Self-Distribution: ⊢ (A → (B → C)) → ((A → B) → (A → C))
7. Assertion: ⊢ A → ((A → B) → B)
8. Permutation: ⊢ (A → (B → C)) → (B → (A → C))
9. Mingle: ⊢ A → (A → A)

10. Contraposition: ⊢ (A →∼B) → (B →∼A) and ⊢ (A → B) → (∼B →∼
A)

11. Peirce’s Law : ⊢ ((A → B) → A) → A
12. Monotonicity : ⊢ (A → C) → ((A ∧B) → C)
13. Residuation: ⊢ (A → (B → C)) → ((A ◦B) → C) and its converse
14. Rule Residuation: ⊢ A → (B → C) ∴⊢ (A ◦B) → C and its converse
15. Negated conditional : ⊢∼(A → B)
16. Symmetry of the conditional : ⊢ (A → B) → (B → A)
17. Aristotle’s Second Thesis : ⊢∼((A → B) ∧ (∼A → B))
18. Abelard’s Second Principle: ⊢∼(A →∼B)
19. Converse of (BT): ⊢∼(A →∼B) → (A → B)
20. Converse of (BT’): ⊢∼(A → B) → (A →∼B)

Proof. The following are counterexamples to the respective principles:

1. I(A) = 0, I(B) = 0, I(C) = 5.
2. I(A) = 0, I(B) = 0, I(C) = 1.
3. I(A) = 5, I(B) = 0, I(C) = 0.
4. I(A) = 5, I(B) = 0, I(C) = 0, I(D) = 0.
5. I(A) = 5, I(B) = 0, I(C) = 0, I(D) = 0, I(E) = 5.
6. I(A) = 0, I(B) = 1, I(C) = 0.
7. I(A) = 0, I(B) = 1.
8. I(A) = 5, I(B) = 0, I(C) = 0.
9. I(A) = 1.

10. I(A) = 0, I(B) = 5 and I(A) = 0, I(B) = 0, respectively.
11. I(A) = 2, I(B) = 3.
12. I(A) = 0, I(B) = 5, I(C) = 0.
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13. I(A) = 5, I(B) = 0, I(C) = 2 and I(A) = 0, I(B) = 5, I(C) = 0,
respectively.

14. I(A) = 5, I(B) = 0, I(C) = 2 and I(A) = 0, I(B) = 5, I(C) = 0,
respectively.

15. I(A) = 0, I(B) = 0.
16. I(A) = 1, I(B) = 0.
17. I(A) = 1, I(B) = 0.
18. I(A) = 0, I(B) = 5
19. I(A) = 0, I(B) = 1.
20. I(A) = 0, I(B) = 1.

Proposition 3.3. McCL is a wr-matrix.

Proof. Let xi = 2, xr = 3 and xF = 5. Then conditions 1.–3. of Definition 2.11
are satisfied.

Corollary 3.1. cCL has the VSP.

Proof. By Theorem 2.2 and Proposition 3.3.

Corollary 3.2. JMcCLK is a wr-model structure.

Proof. By Proposition 3.3 and Definition 2.12. In all interpretations, we will fix
xT = 3.

Corollary 3.3. If |=JMcCLK A ↠ B, then A and B share at least one propositional
variable at the same depth.

Proof. From Corollary 3.2 and Theorem 2.3.

Thus, none of the well-known paradoxes of implication are valid in cCL and
one can reasonably claim that it is a relevant logic, besides being connexive.
However, it certainly is not a deep relevant logic nor a strong paraconsistent
logic. And even though cCL is not exactly a connexive extension of B, because
it lacks Rule Affixing, it happens to be a contradictory logic.

Definition 3.2. A logic L is contradictory iff ⊢L A and ⊢L∼A.

Proposition 3.4. cCL is a contradictory logic.

Proof. The following derivation, using cCL-valid principles, establishes the re-
sult:

1. ⊢ (p∧ ∼p) → p [instance of Simplification]
2. ⊢∼p →∼(p∧ ∼p) [Rule Contraposition, 1]
3. ⊢ (p∧ ∼p) →∼p [instance of Simplification]
4. ⊢ (p∧ ∼p) →∼(p∧ ∼p) [Rule Transitivity, 3 and 2]
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So ⊢cCL (p∧ ∼p) →∼ (p∧ ∼p). On the other hand, ⊢cCL∼ ((p∧ ∼p) →∼ (p∧ ∼
p)) is an instance of (AT).

I will not dwell further into the properties of cCL. This system is introduced
only because its logical matrix is suitable to build a hierarchical model structure
for a deep relevant connexive logic. Such logic, called cDR, is defined through
the following axiomatization:

A1. ⊢ A ↠ A
A2. ⊢ (A ∧B) ↠ A
A3. ⊢ (A ∧B) ↠ B
A4. ⊢ ((A ↠ B) ∧ (A ↠ C)) ↠ (A ↠ (B ∧ C))
A5. ⊢ ((A ↠ C) ∧ (B ↠ C)) ↠ ((A ∨B) ↠ C)
A6. ⊢ ((A ↠ B) ∧ (B ↠ C)) ↠ (A ↠ C)
A7. ⊢ (A ∧ (B ∨ C)) ↠ ((A ∧B) ∨ (A ∧ C))
A8. ⊢∼∼A ↠ A
A9. ⊢ A∨ ∼A

A10. ⊢ (A ↠∼B) ↠∼(A ↠ B)
R1. ⊢ A,⊢ A ↠ B ∴⊢ B
R2. ⊢ A,⊢ B ∴⊢ A ∧B
R3. ⊢ A ↠∼B ∴⊢ B ↠∼A
R4. ⊢ A ↠ B ∴⊢ (C ↠ A) ↠ (C ↠ B)

Note the similarities between Brady’s axiomatization of DRd and that of
cDR.7 A nice feature of this similarity is that many useful theorems and derived
rules of DRd carry over to cDR, like ⊢ A ↠∼∼A, and ⊢ A ↠ B ∴⊢∼B ↠∼A,
and ⊢ A ↠ B,⊢ B ↠ C ∴⊢ A ↠ C, as well as Addition, De Morgan Laws, the
Principle of Non-Contradiction and Modus Tollens, to name a few that will be
used below. To establish the connexive theses in cDR, first we see that (BT)
follows from A10., which is just (BT’):

1. ⊢ (A ↠∼B) ↠∼(A ↠ B) [A10]
2. ⊢ (A ↠ B) ↠∼(A ↠∼B) [R3, 1]

Then (AT) follows from (BT):

1. ⊢ (A ↠ A) ↠∼(A ↠∼A) [(BT)]
2. ⊢ A ↠ A [A1]
3. ⊢∼(A ↠∼A) [R1 2,1]

and (AT’) follows from (BT’):

1. ⊢ (∼A ↠∼A) ↠∼(∼A ↠ A) [A10]

7As noted by Ed Mares in conversation, cDR also resembles Routley’s DK. The most
important difference between them is that DK has Contraposition in arrow form and it also
has Rule Affixing, ⊢ A → B, ⊢ C → D ∴⊢ (B → C) → (A → D), while cDR does not.
Indeed, all axioms but not all rules of B are included in cDR.
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2. ⊢∼A ↠∼A [A1]
3. ⊢∼(∼A ↠ A) [R1 2,1]

Moreover, following nomenclature in [15], cDR is Abelardian (but not ultra-
Abelardian [13], for ∼(A ↠∼B) does not hold), since Abelard’s First Principle
is derivable thus:

1. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠ (A ↠ B) [A2]
2. ⊢ (A ↠ B) ↠∼(A ↠∼B) [(BT)]
3. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠∼(A ↠∼B) [Rule Transitivity 1,2]
4. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠ (A ↠∼B) [A3]
5. ⊢ (A ↠∼B) ↠∼(A ↠ B) [(BT’)]
6. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠∼(A ↠ B) [Rule Transitivity 4,5]
7. ⊢ (((A ↠ B) ∧ (A ↠∼B)) ↠∼ (A ↠ B)) ∧ (((A ↠ B) ∧ (A ↠∼B)) ↠∼

(A ↠∼B)) [R2 6,3]
8. ((((A ↠ B) ∧ (A ↠∼B)) ↠∼ (A ↠ B)) ∧ (((A ↠ B) ∧ (A ↠∼B)) ↠∼

(A ↠∼B))) ↠ (((A ↠ B) ∧ (A ↠∼B)) ↠ (∼ (A ↠ B)∧ ∼ (A ↠∼B)))
[A4]

9. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠ (∼(A ↠ B)∧ ∼(A ↠∼B)) [R1 7,8]
10. ⊢ (∼ (A ↠ B)∧ ∼ (A ↠∼B)) ↠∼ ((A ↠ B) ∨ (A ↠∼B)) [De Morgan

Laws]
11. ⊢ ((A ↠ B) ∧ (A ↠∼B)) ↠∼ ((A ↠ B) ∨ (A ↠∼B)) [Rule Transitivity

9,10]
12. ⊢ ((A ↠ B) ∧ (A ↠∼ B)) ↠ ((A ↠ B) ∨ (A ↠∼ B)) [Theorem ⊢

(C ∧D) ↠ (C ∨D)]
13. ⊢ (((A ↠ B) ∧ (A ↠∼ B)) ↠ ((A ↠ B) ∨ (A ↠∼ B))) ∧ (((A ↠

B) ∧ (A ↠∼B)) ↠∼((A ↠ B) ∨ (A ↠∼B))) [R2 12,11]
14. ⊢ ((((A ↠ B) ∧ (A ↠∼ B)) ↠ ((A ↠ B) ∨ (A ↠∼ B))) ∧ (((A ↠

B) ∧ (A ↠∼B)) ↠∼ ((A ↠ B) ∨ (A ↠∼B)))) ↠ (((A ↠ B) ∧ (A ↠∼
B)) ↠ (((A ↠ B) ∨ (A ↠∼B))∧ ∼((A ↠ B) ∨ (A ↠∼B)))) [A4]

15. ⊢ ((A ↠ B) ∧ (A ↠∼ B)) ↠ (((A ↠ B) ∨ (A ↠∼ B))∧ ∼ ((A ↠
B) ∨ (A ↠∼B))) [R1 13,14]

16. ⊢∼ (((A ↠ B) ∨ (A ↠∼ B))∧ ∼ ((A ↠ B) ∨ (A ↠∼ B))) [Theorem
⊢∼(C∧ ∼C)]

17. ⊢∼((A ↠ B) ∧ (A ↠∼B)) [Modus Tollens 11,12]

To get cDRd, add the following disjunctive rule to cDR:

R5. ⊢ C ∨ A,⊢ C ∨ (A ↠ B) ∴⊢ C ∨B

Note that the disjunctive rule ⊢ C ∨ A ∴⊢ C∨ ∼ (A ↠∼A) is superfluous in
cDRd since ⊢cDR C∨ ∼ (A ↠∼ A) is derivable from ⊢cDR∼ (A ↠∼ A) and
⊢cDR B ↠ (A ∨ B) using R1. On the other hand, since the disjunctive Rule
Affixing is invalid in McCL, and therefore also invalid in JMcCLK, it follows from
the arguments we will give below that it is not a rule of cDRd.

Since we aim to define a family of deep relevant connexive logics using wr-
model structures, we use Brady’s technique and define, in addition to T , some
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subsets of K in McCL: T ∗ = {0}, a = {0, 1, 2}, and a∗ = {0, 1, 3}. We also
redefine clause 6.3 in Definition 2.13 thus:

6.3.’ for j = ω,

6.3a Iω(A ↠ B) ∈ T iff Ij(A → B) ∈ T for all j (0 ≤ j ≤ ω)
6.3b Iω(A ↠ B) ∈ T ∗ iff Ij(A → B) ∈ T ∗ for all j (0 ≤ j ≤ ω)
6.3c Iω(A ↠ B) ∈ a iff Ij(A → B) ∈ a for all j (0 ≤ j ≤ ω)
6.3d Iω(A ↠ B) ∈ a∗ iff Ij(A → B) ∈ a∗ for all j (0 ≤ j ≤ ω)

Lemma 3.1. For all i (0 ≤ i ≤ ω),

(i) (a) Ii(∼A) ∈ T ⇔ Ii(A) /∈ T ∗

(b) Ii(∼A) ∈ T ∗ ⇔ Ii(A) /∈ T
(c) Ii(∼A) ∈ a ⇔ Ii(A) /∈ a∗

(d) Ii(∼A) ∈ a∗ ⇔ Ii(A) /∈ a
(ii) (a) Ii(A ∧B) ∈ T ⇔ Ii(A) ∈ T and Ii(B) ∈ T

(b) Ii(A ∧B) ∈ T ∗ ⇔ Ii(A) ∈ T ∗ and Ii(B) ∈ T ∗

(c) Ii(A ∧B) ∈ a ⇔ Ii(A) ∈ a and Ii(B) ∈ a
(d) Ii(A ∧B) ∈ a∗ ⇔ Ii(A) ∈ a∗ and Ii(B) ∈ a∗

(iii) (a) Ii(A ∨B) ∈ T ⇔ Ii(A) ∈ T or Ii(B) ∈ T
(b) Ii(A ∨B) ∈ T ∗ ⇔ Ii(A) ∈ T ∗ or Ii(B) ∈ T ∗

(c) Ii(A ∨B) ∈ a ⇔ Ii(A) ∈ a or Ii(B) ∈ a
(d) Ii(A ∨B) ∈ a∗ ⇔ Ii(A) ∈ a∗ or Ii(B) ∈ a∗

(iv) (a)

Ii(A → B) ∈ T ⇔Ii(A) ∈ T ⇒ Ii(B) ∈ T , and

Ii(A) ∈ T ∗ ⇒ Ii(B) ∈ T ∗, and

Ii(A) ∈ a ⇒ Ii(B) ∈ a, and

Ii(A) ∈ a∗ ⇒ Ii(B) ∈ a∗

(b)

Ii(A → B) ∈ T ∗ ⇔Ii(A) ∈ T and Ii(B) ∈ T ∗

(c)

Ii(A → B) ∈ a ⇔Ii(A) ∈ T and Ii(B) ∈ T ∗, or

Ii(A) ∈ T\a∗ and Ii(B) ∈ a

(d)

Ii(A → B) ∈ a∗ ⇔Ii(A) /∈ T , or

Ii(B) ∈ T ∗, or

Ii(A) ∈ T\a and Ii(B) ∈ a∗
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Proof. By inspection of McCL.8

Now we use the previous lemma to prove the analogue of Brady’s Theorem
2 in [4].

Theorem 3.1. JMcCLK verifies cDRd.

Proof. Using Lemma 3.1. For each cDRd axiom we need to prove it is valid in
JMcCLK; in particular, for axioms of the form A ↠ B, we need to prove that, for
all valuations v and all j (0 ≤ j ≤ ω),

(1) Ij(A) ∈ T ⇒ Ij(B) ∈ T
(2) Ij(A) ∈ T ∗ ⇒ Ij(B) ∈ T ∗

(3) Ij(A) ∈ a ⇒ Ij(B) ∈ a
(4) Ij(A) ∈ a∗ ⇒ Ij(B) ∈ a∗

and for each cDRd rule we need to prove that it preserves JMcCLK-validity.

[Ad A1.]

Trivial.

[Ad A2.]

(I) To prove Ij(A ∧B) ∈ T ⇒ Ij(A) ∈ T .

Assume Ij(A ∧ B) ∈ T for arbitrary j (0 ≤ j ≤ ω). Then Ij(A) ∈ T
and Ij(B) ∈ T , so in particular Ij(A) ∈ T .

(II) To prove Ij(A ∧B) ∈ T ∗ ⇒ Ij(A) ∈ T ∗.

Similar to (I).

(III) To prove Ij(A ∧B) ∈ a ⇒ Ij(A) ∈ a.

Similar to (I).

(IV) To prove Ij(A ∧B) ∈ a∗ ⇒ Ij(A) ∈ a∗.

Similar to (I).

[Ad A3.]

As for A2.

8Note that ⇒ and ⇔ are, respectively, material implication and material equivalence. These
are not connectives in the language of cDRd but belong to the meta-theory in which the result
is proved. This mirrors Brady’s approach to proving properties of DRd. Indeed, using classical
logic at the level of the meta-theory while, at the same time, championing some non-classical
logic can be seen as inappropriate, philosophically speaking —a charge of hypocrisy; this is
why Weber’s project [63, Ch.3] aims to erase the meta-theory vs. object-theory distinction
and try to have a logical system that can speak about itself instead of relying on classical logic
to do this. Here I will carry on without considering this objection. On the matter of using
classical meta-theory in paraconsistent logics see [53].
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[Ad A4.]

(I) To prove Ij((A ↠ B) ∧ (A ↠ C)) ∈ T ⇒ Ij(A ↠ (B ∧ C)) ∈ T .

(a) For j = 0, as I0(A ↠ (B ∧ C)) = 3, I0(A ↠ (B ∧ C)) ∈ T .
(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (A ↠ C)) ∈ T . Then Ij(A ↠

B) ∈ T and Ij(A ↠ C) ∈ T , so Ij−1(A → B) ∈ T and Ij−1(A → C) ∈
T . We have then (i) Ij−1(A) ∈ T ⇒ Ij−1(B) ∈ T and Ij−1(A) ∈ T ∗ ⇒
Ij−1(B) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(B) ∈ a and Ij−1(A) ∈ a∗ ⇒
Ij−1(B) ∈ a∗; and (ii) Ij−1(A) ∈ T ⇒ Ij−1(C) ∈ T and Ij−1(A) ∈
T ∗ ⇒ Ij−1(C) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(C) ∈ a and Ij−1(A) ∈
a∗ ⇒ Ij−1(C) ∈ a∗. So it follows that Ij−1(A) ∈ T ⇒ Ij−1(B∧C) ∈ T
and Ij−1(A) ∈ T ∗ ⇒ Ij−1(B ∧ C) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(B ∧
C) ∈ a and Ij−1(A) ∈ a∗ ⇒ Ij−1(B ∧ C) ∈ a∗. Therefore Ij−1(A →
(B ∧ C)) ∈ T so Ij(A ↠ (B ∧ C)) ∈ T .

(c) For j = ω, assume Iω((A ↠ B) ∧ (A ↠ C)) ∈ T . Then, for all
j, Ij(A → B) ∈ T and Ij(A → C) ∈ T , so, as in (I.b), Ij(A →
(B ∧ C)) ∈ T , whence Iω(A ↠ (B ∧ C)) ∈ T .

(II) To prove Ij((A ↠ B) ∧ (A ↠ C)) ∈ T ∗ ⇒ Ij(A ↠ (B ∧ C)) ∈ T ∗.

(a) For j = 0, since I0(A ↠ B) = I0(A ↠ C) = I0((A ↠ B) ∧ (A ↠
C)) = 3, we have I0((A ↠ B) ∧ (A ↠ C)) /∈ T ∗.

(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (A ↠ C)) ∈ T ∗. Then
Ij(A ↠ B) ∈ T ∗ and Ij(A ↠ C) ∈ T ∗, so Ij−1(A → B) ∈ T ∗ and
Ij−1(A → C) ∈ T ∗. We have then (i) Ij−1(A) ∈ T and Ij−1(B) ∈ T ∗;
and (ii) Ij−1(A) ∈ T and Ij−1(C) ∈ T ∗. So it follows that Ij−1(A) ∈ T
and Ij−1(B ∧ C) ∈ T ∗, whence Ij−1(A → (B ∧ C)) ∈ T ∗, so Ij(A ↠
(B ∧ C)) ∈ T ∗.

(c) For j = ω, as in (II.b).

(III) To prove Ij((A ↠ B) ∧ (A ↠ C)) ∈ a ⇒ Ij(A ↠ (B ∧ C)) ∈ a.

(a) For j = 0, since I0(A ↠ B) = I0(A ↠ C) = I0((A ↠ B) ∧ (A ↠
C)) = 3, we have I0((A ↠ B) ∧ I(A ↠ C)) /∈ a.

(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (A ↠ C)) ∈ a. Then Ij(A ↠
B) ∈ a and Ij(A ↠ C) ∈ a, so Ij−1(A → B) ∈ a and Ij−1(A → C) ∈
a. Then we have, on the one hand, (i) Ij−1(A) ∈ T and Ij−1(B) ∈
T ∗, or (ii) Ij−1(A) ∈ T\a∗ and Ii(B) ∈ a; and, on the other hand,
(iii) Ij−1(A) ∈ T and Ij−1(C) ∈ T ∗, or (iv) Ij−1(A) ∈ T\a∗ and
Ij−1(C) ∈ a. If (i) and (iii), then Ij−1(A) ∈ T and Ij−1(B ∧ C) ∈ T ∗,
so Ij−1(A → (B∧C)) ∈ a, whence Ij(A ↠ (B∧C)) ∈ a. If (i) and (iv),
then Ij−1(A) ∈ T\a∗ and Ij−1(B ∧C) ∈ a, so Ij−1(A → (B ∧C)) ∈ a,
whence Ij(A ↠ (B ∧C)) ∈ a —and similarly, if (ii) and (iii), or if (ii)
and (iv). So Ij(A ↠ (B ∧ C)) ∈ a in all cases.

(c) For j = ω, as in (III.b).

(IV) To prove Ij((A ↠ B) ∧ (A ↠ C)) ∈ a∗ ⇒ Ij(A ↠ (B ∧ C)) ∈ a∗.

(a) For j = 0, since I0(A ↠ (B∧C)) = 3, we have I0(A ↠ (B∧C)) ∈ a∗.
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(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (A ↠ C)) ∈ a∗. Then Ij(A ↠
B) ∈ a∗ and Ij(A ↠ C) ∈ a∗, so Ij−1(A → B) ∈ a∗ and Ij−1(A →
C) ∈ a∗. Then we have, on the one hand, (i) Ij−1(A) /∈ T , or (ii)
Ij−1(B) ∈ T ∗, or (iii) Ij−1(A) ∈ T\a and Ij−1(B) ∈ a∗; and, on the
other hand, (iv) Ij−1(A) /∈ T , or (v) Ij−1(C) ∈ T ∗, or (vi) Ij−1(A) ∈
T\a and Ij−1(C) ∈ a∗. If (i) and (iv), Ij−1(A → (B∧C)) ∈ a∗ follows
immediately, so Ij(A ↠ (B∧C)) ∈ a∗ —and similarly if (i) and (v), or
if (i) and (vi), or if (ii) and (iv). If (ii) and (v), then Ij−1(B∧C) ∈ T ∗,
so Ij−1(A → (B ∧ C)) ∈ a∗ and then Ij(A ↠ (B ∧ C)) ∈ a∗. If (ii)
and (vi), then Ij−1(A) ∈ T\a and Ij−1(B ∧ C) ∈ a∗, so Ij−1(A →
(B ∧ C)) ∈ a∗ and then Ij(A ↠ (B ∧ C)) ∈ a∗ —and similarly if (iii)
and (v), or if (iii) and (vi). Cases (iii) and (iv) cannot occur together.
So Ij(A ↠ (B ∧ C)) ∈ a∗ in all cases.

(c) For j = ω, as in (IV.b).

[Ad A5.]

(I) To prove Ij((A ↠ C) ∧ (B ↠ C)) ∈ T ⇒ Ij((A ∨B) ↠ C) ∈ T .

(a) For j = 0, since I0((A ∨B) ↠ C) = 3, then I0((A ∨B) ↠ C) ∈ T .
(b) For 0 < j < ω, assume Ij((A ↠ C) ∧ (B ↠ C)) ∈ T . Then Ij(A ↠

C) ∈ T and Ij(B ↠ C) ∈ T , so Ij−1(A → C) ∈ T and Ij−1(B → C) ∈
T . Then we have, on the one hand, Ij−1(A) ∈ T ⇒ Ij−1(C) ∈ T and
Ij−1(A) ∈ T ∗ ⇒ Ij−1(C) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(C) ∈ a and
Ij−1(A) ∈ a∗ ⇒ Ij−1(C) ∈ a∗; and, on the other hand, Ij−1(B) ∈ T ⇒
Ij−1(C) ∈ T and Ij−1(B) ∈ T ∗ ⇒ Ij−1(C) ∈ T ∗ and Ij−1(B) ∈ a ⇒
Ij−1(C) ∈ a and Ij−1(B) ∈ a∗ ⇒ Ij−1(C) ∈ a∗. If Ij−1(A ∨ B) ∈ T ,
then Ij−1(A) ∈ T or Ij−1(B) ∈ T , so Ij−1(C) ∈ T . If Ij−1(A ∨
B) ∈ T ∗, then Ij−1(A) ∈ T ∗ or Ij−1(B) ∈ T ∗, so Ij−1(C) ∈ T ∗. If
Ij−1(A ∨ B) ∈ a, then Ij−1(A) ∈ a or Ij−1(B) ∈ a, so Ij−1(C) ∈ a. If
Ij−1(A∨B) ∈ a∗, then Ij−1(A) ∈ a∗ or Ij−1(B) ∈ a∗, so Ij−1(C) ∈ a∗.
Therefore, Ij−1((A ∨B) → C) ∈ T , so Ij((A ∨B) ↠ C) ∈ T .

(c) For j = ω, as in (I.b).

(II) To prove Ij((A ↠ C) ∧ (B ↠ C)) ∈ T ∗ ⇒ Ij((A ∨B) ↠ C) ∈ T ∗.

(a) For j = 0, since I0(A ↠ C) = I0(B ↠ C) = I0((A ↠ C) ∧ (B ↠
C)) = 3, I0((A ↠ C) ∧ (B ↠ C)) /∈ T ∗.

(b) For 0 < j < ω, assume Ij((A ↠ C) ∧ (B ↠ C)) ∈ T ∗. Then
Ij(A ↠ C) ∈ T ∗ and Ij(B ↠ C) ∈ T ∗, so Ij−1(A → C) ∈ T ∗

and Ij−1(B → C) ∈ T ∗. Then Ij−1(A) ∈ T and Ij−1(B) ∈ T and
Ij−1(C) ∈ T ∗, so Ij−1(A ∨ B) ∈ T whence Ij−1((A ∨ B) → C) ∈ T ∗

and so Ij((A ∨B) ↠ C) ∈ T ∗.
(c) For j = ω, as in (II.b).

(III) To prove Ij((A ↠ C) ∧ (B ↠ C)) ∈ a ⇒ Ij((A ∨B) ↠ C) ∈ a.

(a) For j = 0, since I0(A ↠ C) = I0(B ↠ C) = I0((A ↠ C) ∧ (B ↠
C)) = 3, I0((A ↠ C) ∧ (B ↠ C)) /∈ a.
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(b) For 0 < j < ω, assume Ij((A ↠ C) ∧ (B ↠ C)) ∈ a. Then Ij(A ↠
C) ∈ a and Ij(B ↠ C) ∈ a, so Ij−1(A → C) ∈ a and Ij−1(B → C) ∈
a. We then have, on the one hand, (i) Ij−1(A) ∈ T and Ij−1(C) ∈ T ∗,
or (ii) Ij−1(A) ∈ T\a∗ and Ij−1(C) ∈ a; and, on the other hand,
(iii) Ij−1(B) ∈ T and Ij−1(C) ∈ T ∗, or (iv) Ij−1(B) ∈ T\a∗ and
Ij−1(C) ∈ a. If (i) and (iii), Ij−1(A ∨ B) ∈ T and Ij−1(C) ∈ T ∗, so
Ij−1((A∨B) → C) ∈ a, whence Ij((A∨B) ↠ C) ∈ a —and similarly if
(i) and (iv), or if (ii) and (iii). If (ii) and (iv), Ij−1(A∨B) ∈ T\a∗ and
Ij−1(C) ∈ a, so Ij−1((A∨B) → C) ∈ a whence Ij((A∨B) ↠ C) ∈ a.
So in all cases Ij((A ∨B) ↠ C) ∈ a.

(c) For j = ω, as in (III.b).

(IV) To prove Ij((A ↠ C) ∧ (B ↠ C)) ∈ a∗ ⇒ Ij((A ∨B) ↠ C) ∈ a∗.

(a) For j = 0, since I0((A ∨B) ↠ C) = 3, Ij((A ∨B) ↠ C) ∈ a∗.
(b) For 0 < j < ω, assume Ij((A ↠ C) ∧ (B ↠ C)) ∈ a∗. Then Ij(A ↠

C) ∈ a∗ and Ij(B ↠ C) ∈ a∗, so Ij−1(A → C) ∈ a∗ and Ij−1(B →
C) ∈ a∗. We then have, on the one hand, (i) Ij−1(A) /∈ T , or (ii)
Ij−1(C) ∈ T ∗, or (iii) Ij−1(A) ∈ T\a and Ij−1(C) ∈ a∗; and, on the
other hand, (iv) Ij−1(B) /∈ T , or (v) Ij−1(C) ∈ T ∗, or (vi) Ij−1(B) ∈
T\a and Ij−1(C) ∈ a∗. If (i) and (iv), Ij−1(A ∨ B) /∈ T , so Ij−1((A ∨
B) → C) ∈ a∗, whence Ij((A ∨ B) ↠ C) ∈ a∗. If (i) and (v), since
Ij−1(C) ∈ T ∗, Ij−1((A∨B) → C) ∈ a∗, whence Ij((A∨B) ↠ C) ∈ a∗

—and similarly if (ii) and (iv), or if (ii) and (v), or if (ii) and (vi), or
if (iii) and (v). If (i) and (vi), Ij−1(A∨B) ∈ T since Ij−1(B) ∈ T , and
Ij−1(A ∨B) /∈ a since Ij−1(A) /∈ a and Ij−1(B) /∈ a, so Ij−1(A ∨B) ∈
T\a and then Ij−1((A∨B) → C) ∈ a∗ whence Ij((A∨B) ↠ C) ∈ a∗

—and similarly if (iii) and (iv), or if (iii) and (vi). So in all cases
Ij((A ∨B) ↠ C) ∈ a∗.

(c) For j = ω, as in (IV.b).

[Ad A6.]

(I) To prove Ij((A ↠ B) ∧ (B ↠ C)) ∈ T ⇒ Ij(A ↠ C) ∈ T .

(a) For j = 0, since I0(A ↠ C) = 3, I0(A ↠ C) ∈ T .
(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (B ↠ C)) ∈ T . Then Ij(A ↠

B) ∈ T and Ij(A ↠ C) ∈ T , so Ij−1(A → B) ∈ T and Ij−1(B → C) ∈
T . We have then (i) Ij−1(A) ∈ T ⇒ Ij−1(B) ∈ T and Ij−1(A) ∈ T ∗ ⇒
Ij−1(B) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(B) ∈ a and Ij−1(A) ∈ a∗ ⇒
Ij−1(B) ∈ a∗; and (ii) Ij−1(B) ∈ T ⇒ Ij−1(C) ∈ T and Ij−1(B) ∈
T ∗ ⇒ Ij−1(C) ∈ T ∗ and Ij−1(B) ∈ a ⇒ Ij−1(C) ∈ a and Ij−1(B) ∈
a∗ ⇒ Ij−1(C) ∈ a∗. So Ij−1(A) ∈ T ⇒ Ij−1(C) ∈ T and Ij−1(A) ∈
T ∗ ⇒ Ij−1(C) ∈ T ∗ and Ij−1(A) ∈ a ⇒ Ij−1(C) ∈ a and Ij−1(A) ∈
a∗ ⇒ Ij−1(C) ∈ a∗, whence Ij−1(A → C) ∈ T so Ij(A ↠ C) ∈ T .

(c) For j = ω, as in (I.b).

(II) To prove Ij((A ↠ B) ∧ (B ↠ C)) ∈ T ∗ ⇒ Ij(A ↠ C) ∈ T ∗.
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(a) For j = 0, since I0(A ↠ B) = I0(B ↠ C) = I0((A ↠ B) ∧ (B ↠
C)) = 3, we have I0((A ↠ B) ∧ (B ↠ C)) /∈ T ∗.

(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (B ↠ C)) ∈ T ∗. Then
Ij(A ↠ B) ∈ T ∗ and Ij(B ↠ C) ∈ T ∗, so Ij−1(A → B) ∈ T ∗ and
Ij−1(B → C) ∈ T ∗. We have then (i) Ij−1(A) ∈ T and Ij−1(B) ∈ T ∗;
and (ii) Ij−1(B) ∈ T and Ij−1(C) ∈ T ∗. So it follows that Ij−1(A →
C) ∈ T ∗, whence Ij(A ↠ C) ∈ T ∗.

(c) For j = ω, as in (II.b).

(III) To prove Ij((A ↠ B) ∧ (B ↠ C)) ∈ a ⇒ Ij(A ↠ C)) ∈ a.

(a) For j = 0, since I0(A ↠ B) = I0(B ↠ C) = I0((A ↠ B) ∧ (B ↠
C)) = 3, we have I0((A ↠ B) ∧ (B ↠ C)) /∈ a.

(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (B ↠ C)) ∈ a. Then Ij(A ↠
B) ∈ a and Ij(B ↠ C) ∈ a, so Ij−1(A → B) ∈ a and Ij−1(B → C) ∈
a. Then we have, on the one hand, (i) Ij−1(A) ∈ T and Ij−1(B) ∈ T ∗,
or (ii) Ij−1(A) ∈ T\a∗ and Ij−1(B) ∈ a; and, on the other hand,
(iii) Ij−1(B) ∈ T and Ij−1(C) ∈ T ∗, or (iv) Ij−1(B) ∈ T\a∗ and
Ij−1(C) ∈ a. If (i) and (iii), then Ij−1(A) ∈ T and Ij−1(C) ∈ T ∗,
so Ij−1(A → C) ∈ a, whence Ij(A ↠ C) ∈ a —and similarly if (ii)
and (iii). Cases (i) and (iv) cannot occur together. If (ii) and (iv),
then Ij−1(A) ∈ T\a∗ and Ij−1(C) ∈ a, so Ij−1(A → C) ∈ a, whence
Ij(A ↠ C) ∈ a. So Ij(A ↠ C) ∈ a in all cases.

(c) For j = ω, as in (III.b).

(IV) To prove Ij((A ↠ B) ∧ (B ↠ C)) ∈ a∗ ⇒ Ij(A ↠ C) ∈ a∗.

(a) For j = 0, since I0(A ↠ C) = 3, we have I0(A ↠ C) ∈ a∗.
(b) For 0 < j < ω, assume Ij((A ↠ B) ∧ (B ↠ C)) ∈ a∗. Then Ij(A ↠

B) ∈ a∗ and Ij(B ↠ C) ∈ a∗, so Ij−1(A → B) ∈ a∗ and Ij−1(B →
C) ∈ a∗. We then have, on the one hand, (i) Ij−1(A) /∈ T , or (ii)
Ij−1(B) ∈ T ∗, or (iii) Ij−1(A) ∈ T\a and Ij−1(B) ∈ a∗; and, on the
other hand, (iv) Ij−1(B) /∈ T , or (v) Ij−1(C) ∈ T ∗, or (vi) Ij−1(B) ∈
T\a and Ij−1(C) ∈ a∗. If (i) and (iv), Ij−1(A → C) ∈ a∗ follows
immediately, so Ij(A ↠ C) ∈ a∗ —and similarly if (i) and (v), or if (i)
and (vi). Cases (ii) and (iv) cannot occur together —and similarly if
(ii) and (vi), or if (iii) and (iv). If (ii) and (v), it immediately follows
that Ij−1(A → C) ∈ a∗, so Ij(A ↠ C) ∈ a∗ —and similarly if (iii)
and (v). If (iii) and (vi), then Ij−1(A) ∈ T\a and Ij−1(C) ∈ a∗, so
Ij−1(A → C) ∈ a∗, whence Ij(A ↠ C) ∈ a∗. So Ij(A ↠ C) ∈ a∗ in
all cases.

(c) For j = ω, as in (IV.b).

[Ad A7.]

(I) To prove Ij(A ∧ (B ∨ C)) ∈ T ⇒ Ij((A ∧B) ∨ (A ∧ C)) ∈ T .

Assume Ij(A ∧ (B ∨ C)) ∈ T for arbitrary j (0 ≤ j ≤ ω). Then
Ij(A) ∈ T and Ij(B ∨ C) ∈ T , i.e. Ij(B) ∈ T or Ij(C) ∈ T , so
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[Ij(A) ∈ T and Ij(B) ∈ T ] or [Ij(A) ∈ T and Ij(C) ∈ T ] and therefore
Ij((A ∧B) ∨ (A ∧ C)) ∈ T .

(II) To prove Ij(A ∧ (B ∨ C)) ∈ T ∗ ⇒ Ij((A ∧B) ∨ (A ∧ C)) ∈ T ∗.

Similar to (I).

(III) To prove Ij(A ∧ (B ∨ C)) ∈ a ⇒ Ij((A ∧B) ∨ (A ∧ C)) ∈ a.

Similar to (I).

(IV) To prove Ij(A ∧ (B ∨ C)) ∈ a∗ ⇒ Ij((A ∧B) ∨ (A ∧ C)) ∈ a∗.

Similar to (I).

[Ad A8.]

(I) To prove Ij(∼∼A) ∈ T ⇒ Ij(A) ∈ T .

Assume Ij(∼∼A) ∈ T for arbitrary j (0 ≤ j ≤ ω). Then Ij(∼A) /∈ T ∗

so Ij(A) ∈ T .

(II) To prove Ij(∼∼A) ∈ T ∗ ⇒ Ij(A) ∈ T ∗.

Assume Ij(∼∼A) ∈ T ∗ for arbitrary j (0 ≤ j ≤ ω). Then Ij(∼A) /∈ T
so Ij(A) ∈ T ∗.

(III) To prove Ij(∼∼A) ∈ a ⇒ Ij(A) ∈ a.

Assume Ij(∼∼A) ∈ a for arbitrary j (0 ≤ j ≤ ω). Then Ij(∼A) /∈ a∗

so Ij(A) ∈ a.

(IV) To prove Ij(∼∼A) ∈ a∗ ⇒ Ij(A) ∈ a∗.

Assume Ij(∼∼A) ∈ a∗ for arbitrary j (0 ≤ j ≤ ω). Then Ij(∼A) /∈ a
so Ij(A) ∈ a∗.

[Ad A9.]

Iω(A∨ ∼ A) ∈ T ⇔ [Iω(A) ∈ T or Iω(∼ A) ∈ T ] ⇔ [Iω(A) ∈ T or
Iω(A) /∈ T ∗]. So A9. is valid in JMcCLK.

[Ad A10.]

(I) To prove Ij(A ↠∼B) ∈ T ⇒ Ij(∼(A ↠ B)) ∈ T .

(a) For j = 0, as I0(A ↠ B) = 3 = I0(∼ (A ↠ B)), then I0(∼ (A ↠
B)) ∈ T .

(b) For 0 < j < ω, assume Ij(A ↠∼B) ∈ T . Then Ij−1(A →∼B) ∈ T ,
so, in particular, Ij−1(A) ∈ T ⇒ Ij−1(∼B) ∈ T . Assume Ij−1(A →
B) ∈ T ∗. Then Ij−1(A) ∈ T and Ij−1(B) ∈ T ∗; it follows that Ij−1(∼
B) ∈ T , but then Ij−1(B) /∈ T ∗, a contradiction. Therefore Ij−1(A →
B) /∈ T ∗ so Ij−1(∼(A → B)) ∈ T , whence Ij(∼(A ↠ B)) ∈ T .

(c) For j = ω, as in (I.b).

(II) To prove Ij(A ↠∼B) ∈ T ∗ ⇒ Ij(∼(A ↠ B)) ∈ T ∗.
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(a) For j = 0, since I0(A ↠∼B) = 3, I0(A ↠∼B) /∈ T ∗.
(b) For 0 < j < ω, assume Ij(A ↠∼B) ∈ T ∗. So Ij−1(A →∼B) ∈ T ∗,

whence Ij−1(A) ∈ T and Ij−1(∼B) ∈ T ∗, i.e. Ij−1(B) /∈ T . Assume
Ij−1(A → B) ∈ T ; then, in particular, Ij−1(A) ∈ T ⇒ Ij−1(B) ∈ T ,
so Ij−1(B) ∈ T follows, a contradiction. Therefore Ij−1(A → B) /∈ T ,
so Ij−1(∼(A → B)) ∈ T ∗, whence Ij(∼(A ↠ B)) ∈ T ∗.

(c) For j = ω, as in (II.b).

(III) To prove Ij(A ↠∼B) ∈ a ⇒ Ij(∼(A ↠ B)) ∈ a.

(a) For j = 0, since I0(A ↠∼B) = 3, I0(A ↠∼B) /∈ a.
(b) For 0 < j < ω, assume Ij(A ↠∼ B) ∈ a. So Ij−1(A →∼ B) ∈ a,

whence (i) Ij−1(A) ∈ T and Ij−1(∼ B) ∈ T ∗, i.e. Ij−1(B) /∈ T , or
(ii) Ij−1(A) ∈ T\a∗ and Ij−1(∼ B) ∈ a, i.e. Ij−1(B) /∈ a∗. Assume
Ij−1(A → B) ∈ a∗. Then (iii) Ij−1(A) /∈ T , or (iv) Ij−1(B) ∈ T ∗, or
(v) Ij−1(A) ∈ T\a and Ij−1(B) ∈ a∗. If (i) and (iii), contradiction
—and similarly if (i) and (iv), or if (i) and (v), or if (ii) and (iii), or
if (ii) and (iv), or if (ii) and (v). Therefore Ij−1(A → B) /∈ a∗, so
Ij−1(∼(A → B)) ∈ a, whence Ij(∼(A ↠ B)) ∈ a.

(c) For j = ω, as in (III.b).

(IV) To prove Ij(A ↠∼B) ∈ a∗ ⇒ Ij(∼(A ↠ B)) ∈ a∗.

(a) For j = 0, since I0(A ↠ B) = 3 = I0(∼ (A ↠ B)), I0(∼ (A ↠ B)) ∈
a∗.

(b) For 0 < j < ω, assume Ij(A ↠∼B) ∈ a∗. So Ij−1(A →∼B) ∈ a∗,
whence (i) Ij−1(A) /∈ T , or (ii) Ij−1(∼B) ∈ T ∗, i.e. Ij−1(B) /∈ T , or
(iii) Ij−1(A) ∈ T\a and Ij−1(∼ B) ∈ a∗, i.e. Ij−1(B) /∈ a. Assume
Ij−1(A → B) ∈ a. Then (iv) Ij−1(A) ∈ T and Ij−1(B) ∈ T ∗, or
(v) Ij−1(A) ∈ T\a∗ and Ij−1(B) ∈ a. If (i) and (iv), contradiction
—and similarly if (i) and (v), or if (ii) and (iv), or if (ii) and (v), or
if (iii) and (iv), or if (iii) and (v). Therefore, Ij−1(A → B) /∈ a, so
Ij−1(∼(A → B)) ∈ a∗, whence Ij(∼(A → B)) ∈ a∗.

(c) For j = ω, as in (IV.b).

[Ad R1.]

Let |=JMcCLK A and |=JMcCLK A ↠ B. Then Iω(A) ∈ T and Iω(A ↠ B) ∈ T ,
for all valuations v. Then, for arbitrary v, Iω(A → B) ∈ T so by Lemma
3.1 Iω(A) ∈ T ⇒ Iω(B) ∈ T . Therefore Iω(B) ∈ T so |=JMcCLK B. Hence
R1. preserves JMcCLK-validity.

[Ad R2.]

Let |=JMcCLK A and |=JMcCLK B. Then Iω(A) ∈ T and Iω(B) ∈ T for all
valuations v. Then, for arbitrary v, by Lemma 3.1, Iω(A ∧ B) ∈ T so
|=JMcCLK A ∧B. Hence R2. preserves JMcCLK-validity.

[Ad R3.]
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Let |=JMcCLK A ↠∼B. Then Iω(A ↠∼B) ∈ T for all valuations v. Then, for
arbitrary v, Iω(A →∼B) ∈ T so by Lemma 3.1 (i) Iω(A) ∈ T ⇒ Iω(∼B) ∈
T and therefore Iω(∼B) /∈ T ⇒ Iω(A) /∈ T so Iω(B) ∈ T ∗ ⇒ Iω(∼A) ∈ T ∗;
(ii) Iω(A) ∈ T ∗ ⇒ Iω(∼B) ∈ T ∗ and therefore Iω(∼B) /∈ T ∗ ⇒ Iω(A) /∈ T ∗

so Iω(B) ∈ T ⇒ Iω(∼A) ∈ T ; (iii) Iω(A) ∈ a ⇒ Iω(∼B) ∈ a and therefore
Iω(∼ B) /∈ a ⇒ Iω(A) /∈ a so Iω(B) ∈ a∗ ⇒ Iω(∼ A) ∈ a∗; and (iv)
Iω(A) ∈ a∗ ⇒ Iω(∼ B) ∈ a∗ and therefore Iω(∼ B) /∈ a∗ ⇒ Iω(A) /∈ a∗

so Iω(B) ∈ a ⇒ Iω(∼ A) ∈ a. Hence Iω(B →∼ A) ∈ T for all v, so
Iω(B ↠∼ A) ∈ T and then |=JMcCLK B ↠∼ A. So R3. preserves JMcCLK-
validity.

[Ad R4.]

Let |=JMcCLK A ↠ B. Then Iω(A ↠ B) ∈ T for all valuations v. Then, for
arbitrary v, Iω(A → B) ∈ T , so by Lemma 3.1 Iω(A) ∈ T ⇒ Iω(B) ∈ T ,
and Iω(A) ∈ T ∗ ⇒ Iω(B) ∈ T ∗, and Iω(A) ∈ a ⇒ Iω(B) ∈ a, and
Iω(A) ∈ a∗ ⇒ Iω(B) ∈ a∗. We reason thus:

(a) If Iω(C ↠ A) ∈ T , then Iω(C) ∈ T ⇒ Iω(A) ∈ T , and Iω(C) ∈ T ∗ ⇒
Iω(A) ∈ T ∗, and Iω(C) ∈ a ⇒ Iω(A) ∈ a, and Iω(C) ∈ a∗ ⇒ Iω(A) ∈
a∗. Then Iω(C) ∈ T ⇒ Iω(B) ∈ T , and Iω(C) ∈ T ∗ ⇒ Iω(B) ∈ T ∗,
and Iω(C) ∈ a ⇒ Iω(B) ∈ a, and Iω(C) ∈ a∗ ⇒ Iω(B) ∈ a∗. So
Iω(C ↠ B) ∈ T .

(b) If Iω(C ↠ A) ∈ T ∗, then Iω(C) ∈ T and Iω(A) ∈ T ∗, whence Iω(B) ∈
T ∗, so Iω(C ↠ B) ∈ T ∗.

(c) If Iω(C ↠ A) ∈ a, then (i) Iω(C) ∈ T and Iω(A) ∈ T ∗, or (ii) Iω(C) ∈
T\a∗ and Iω(A) ∈ a. If (i), then Iω(B) ∈ T ∗, so Iω(C ↠ B) ∈ a. If
(ii), then Iω(B) ∈ a, so Iω(C ↠ B) ∈ a. Hence, Iω(C ↠ B) ∈ a.

(d) If Iω(C ↠ A) ∈ a∗, then (i) Iω(C) /∈ T , or (ii) Iω(A) ∈ T ∗, or (iii)
Iω(C) ∈ T\a and Iω(A) ∈ a∗. If (i), then Iω(C ↠ B) ∈ a∗. If (ii),
then Iω(B) ∈ T ∗, so Iω(C ↠ B) ∈ a∗. If (iii), then Iω(B) ∈ a∗, so
Iω(C ↠ B) ∈ a∗. Hence Iω(C ↠ B) ∈ a∗.

Therefore Iω((C ↠ A) → (C ↠ B)) ∈ T , so Iω((C ↠ A) ↠ (C ↠ B)) ∈
T . Hence |=JMcCLK (C ↠ A) ↠ (C ↠ B). So R4. preserves JMcCLK-validity.

[Ad R5.]

Let |=JMcCLK C ∨ A and |=JMcCLK C ∨ (A ↠ B). Then Iω(C ∨ A) ∈ T and
Iω(C ∨ (A ↠ B)) for all valuations v. So for arbitrary v, let Iω(C) /∈ T .
Then Iω(A) ∈ T and Iω(A ↠ B) ∈ T . Then by the argument for R1.,
Iω(B) ∈ T , so Iω(C ∨ B) ∈ T and then |=JMcCLK C ∨ B. So R5. preserves
JMcCLK-validity.

So all axioms of cDRd are valid in JMcCLK and all rules of cDRd preserve JMcCLK-
validity. Therefore, cDRd is verified by JMcCLK.

Theorem 3.2. cDRd has the DRP.
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Proof. By Corollary 3.3 and Theorem 3.1.

Corollary 3.4. cDRd has the VSP, the AP and the CAP.

Proof. By Theorem 3.2 and Theorem 2.1.

Theorem 3.3. Let X and Y be systems containing “↠” such that all theorems
of X are theorems of Y. Then, if Y satisfies the DRP, so does X.

Proof. Let ⊢X A ↠ B. Then ⊢Y A ↠ B and hence A and B share a variable at
the same depth.

Corollary 3.5. cDR has the DRP.

Proof. Clearly cDR is theoremwise contained in cDRd so by Theorem 3.3 the
result follows.

Corollary 3.6. cDR has the VSP, the AP and the CAP.

Proof. By Corollary 3.5 and Theorem 2.1.

Note that having the DRP is sufficient to know that cDR and cDRd are non-
trivial logics, since no implicative formula violating the DRP will be provable.
Thus depth relevance is a means through which one can avoid the most pressing
problem of combining relevance and connexivity. Moreover, cDR and cDRd do
not validate the negation of every conditional, since their underlying matrix McCL

rules out that result. Still, as expected, we have that:

Proposition 3.5. cDR and cDRd are contradictory logics.

Proof. As in the proof of Proposition 3.4.

Finally, we provide some examples related to the strong paraconsistency of cDR
and cDRd.

Example 3.1. The assignment given in Example 2.2 also works for cDRd using
JMcCLK, so Pseudo-Modus Ponens is invalid in cDRd. Now let X be the formula
(p ↠ (p ↠ q)) ↠ (p ↠ q), an instance of Contraction. Let A be the antecedent
of X; and let B be the consequent of X. We have deg(X) = 3, deg(A) = 2,
deg(B) = 1, d[p1, A] = 1, d[p2, A] = 2 = d[q, A] and d[p,B] = 1 = d[q, B]. We
use JMcCLK to provide a valuation vm−d−1, where m = deg(X) and d is the depth
of each propositional variable in A or in B. By Lemma 2.1, this valuation can
be extended to an interpretation Im−1 that assigns 2 to A and 3 to B, so that
the value of X is 5, thus:

1. v3−2−1(p) = 2 = v3−2−1(q)
2. v3−1−1(p) = 4 and v3−1−1(q) = 3

Then I0(p → q) = 2 so I1(p ↠ q) = 2 and then I1(p → (p ↠ q)) = 2 whence
I2(p ↠ (p ↠ q)) = 2; on the other hand, I1(p → q) = 3 so I2(p ↠ q) = 3; then
I2((p ↠ (p ↠ q)) → (p ↠ q)) = 5 so I3((p ↠ (p ↠ q)) ↠ (p ↠ q)) = 5. So
Contraction is invalid in cDRd.
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4 Conclusions

By building on Brady’s and Robles and Méndez’s results, and by modifying
Meyer’s crystal lattice so as to get a connexive variant of it, a deep relevant
connexive logic cDRd was obtained. This system and those contained in it
witness non-trivial, yet contradictory systems combining connexivity and logical
relevance without validating undesirable theorems like ∼(A → B).

Many interesting questions arise from the work presented here. Regarding
a semantics for cDRd, a natural question is whether a content containment
semantics like that of DJd can be provided [6], [9]. While Brady gave a Routley-
Meyer-style semantics for relevant logics containing Aristotle’s and Boethius’
theses in [8], such proposal will not work for cDRd and its extensions, since
the semantics given there applies to affixing systems and cDRd is crucially non-
affixing.

As for proof theory, it remains to be seen if cDRd, like DJd, is gentzenizable
or if it has a natural deduction system [5], [9]. Another open problem is if cDRd

is decidable, just as DJd is [9]. Indeed, such nice properties of DJd may not
transfer to cDRd as depth relevance did.

On the other hand, cCL, just as its non-connexive counterpart, can be very
useful to logicians investigating the intersection of connexive logics and relevant
logics. Relevant systems lacking the DRP but including the connexive theses
can be shown to have the VSP through McCL, just as subsystems of R can be
shown to have the VSP through MCL. Related to such investigations, it can be
worth exploring whether a negation-consistent relevant connexive logic can be
designed by adopting the SDRP mentioned in footnote 4. Indeed, such a system
would be quite weak, for it would invalidate most implicational theses, including
Simplification. However, it may be more in line with the investigations of McCall
[29], Angell [2] and Nelson [35].

But what about connexive näıve set theory? Following [64], one can show that
all set theories based on connexive logics with Simplification are inconsistent.
More specifically, Wiredu’s argument shows that the typical Zermelo way out
of Russell’s paradox is unavailable for set theories based on connexive logics
with Simplification; i.e. using the Separation axiom instead of the Unrestricted
Comprehension axiom leads to contradictory theorems if one’s set theory is based
on a connexive logic with Simplification. The proof goes as follows:

1. ⊢ ∀z∃y∀x(x ∈ y ↔ (x ∈ z ∧ φx)) [Separation axiom]
2. ⊢ y ∈ y ↔ (y ∈ z∧ ∼(y ∈ y)) [From 1., x/y, y/y, z/z, φ :=∼ (x ∈ x)]
3. ⊢ (y ∈ y → y ∈ z) ∧ (y ∈ y →∼ (y ∈ y)) [From 2., by definition of ↔,

Simplification and ∧-Composition]
4. ⊢ y ∈ y →∼(y ∈ y) [From 3., Simplification]
5. ⊢∼(y ∈ y →∼(y ∈ y)) [Aristotle’s Thesis]
6. ⊢ (y ∈ y →∼(y ∈ y))∧ ∼(y ∈ y →∼(y ∈ y)) [From 4. and 5., Adjunction]

Simplification seems to be key in Wiredu’s proof —just as in the proof of the
inconsistency of cDR and cDRd. Oddly, he considers McCall’s connexive logic
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CC1 [29], where Simplification is invalid; he claims that the reason why Simpli-
fication is invalid is that (A ∧ B) → A cannot have contradictory substitutions
for B as in (p∧ ∼ p) → p because, as per his interpretation of McCall’s work,
contradictions are inferentially innert in connexive settings.9 But even with that
restriction in place, since in the proof above no contradictory substitutions in
Simplification are used, Wiredu’s argument apparently shows that connexive set
theories with Simplification are contradictory.10 This result holds both for ZF
set theories, i.e. those using Separation instead of Unrestricted Comprehension,
and for näıve set theory:

1. ⊢ ∃y∀x(x ∈ y ↔ φ) [Unrestricted Comprehension axiom]
2. ⊢ y ∈ y ↔∼(y ∈ y) [From 1., x/y, y/y, φ :=∼(x ∈ x)]
3. ⊢ y ∈ y →∼(y ∈ y) [From 2., Simplification]
4. ⊢∼(y ∈ y →∼(y ∈ y)) [Aristotle’s Thesis]
5. ⊢ (y ∈ y →∼(y ∈ y))∧ ∼(y ∈ y →∼(y ∈ y)) [From 3. and 4., Adjunction]

Wiredu’s diagnosis is that it is not the “separation” requirement in Zermelo’s
axiom that is decisive in avoiding Russell’s paradox but its truth functionality
[64, p.130]. And that may or not be so. While Wiredu’s argument could dis-
courage some connexive logicians like McCall, pursuing negation-consistency, it
does not discourage those, like myself, that are comfortable working in inconsis-
tent connexive logics. A contradictory, strongly paraconsistent logic like cDR,
or rather cDRdQ, seems well suited for näıve set theory. Indeed, if näıve set
theory is characterized by the Unrestricted Comprehension axiom, which in turn
allows for the existence of inconsistent sets like R —or worse, like Routley’s
Z = {x : x /∈ Z}—, why not have a contradictory logic as its foundation? It was
once dreamed that the contradictory logic DL [44], named “dialectical logic”,
would be such a foundation.

Consider, then, cDRdQ, i.e. the first-order logic obtainded by adding the
following axioms to cDRd and by adjusting the language appropriately:

QA1. ⊢ (∀xA) ↠ A[x/y], where y is free for x in A.
QA2. ⊢ ∀x(A ↠ B) ↠ (A ↠ ∀xB), where x is not free in A.

9In fact, for CC1, Wiredu’s argument is intended to be a triviality proof, since CC1 is
explosive. At least that is so if logical consequence is the standard truth-preserving relation.
Luis Estrada-González and Christian A. Romero-Rodŕıguez argue in [16] that one can avoid
triviality as a consequence of Wiredu’s argument by using Malinowski’s q-consequence over
CC1. They also note that Wiredu’s account of the invalidity of Simplification in CC1 is
incorrect and that Simplification is not needed for the triviality proof, but Conjunction Elim-
ination is, i.e. ⊢ A ∧B ∴⊢ A and ⊢ A ∧B ∴⊢ B, which is shown to be invalid in CC1 using
q-consequence.

10Taking [16] into consideration, the correct conclusion should be that connexive set theo-
ries with Conjunction Elimination are contradictory, which is definitely a stronger conclusion.
Contrast this situation with what happens in relevant näıve set theory, where there is a choice
between having an inconsistent theory, like Routley’s DST [42, pp.919-27], or a consistent
one, like Brady’s CT [9, §6], depending on whether the logic has (unrestrictedly) the Excluded
Middle axiom. See [9, §5.4] and [11].
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QA3. ⊢ ∀x(A ∨B) ↠ (A ∨ ∀xB), where x is not free in A.
QA4. ⊢ A[x/y] ↠ ∃xA, where y is free for x in A.
QA5. ⊢ ∀x(A ↠ B) ↠ (∃xA ↠ B), where x is not free in B.
QA6. ⊢ (A ∧ ∃xB) ↠ ∃x(A ∧B), where x is not free in A.
QR1. ⊢ A ∴⊢ ∀xA

The addition of quantificational axioms does not affect depth relevance; axioms
QA1.–QA6. and rule QR1. are standard across all relevant logics [9, p.38]. So
let us see how cDRdQ deals with Curry’s paradox and its variants.

Clearly, the standard version of Curry’s paradox, the one using Contraction,
will not go through:

1. ⊢ ∃y∀x(x ∈ y ↔ φ) [Unrestricted Comprehension axiom]
2. ⊢ y ∈ y ↔ (y ∈ y → A) [From 1., x/y, y/y, φ := x ∈ x → A]
3. ⊢ y ∈ y → (y ∈ y → A) [From 2., Simplification]
4. ⊢ (y ∈ y → (y ∈ y → A)) → (y ∈ y → A) [Instance of Contraction]
5. ⊢ y ∈ y → A [From 3. and 4., Modus Ponens]
6. ⊢ (y ∈ y → A) → y ∈ y [From 2., Simplification]
7. ⊢ y ∈ y [From 5. and 6., Modus Ponens]
8. ⊢ A [From 5. and 7., Modus Ponens]

Neither will the following, depending on Pseudo-Modus Ponens:

1. ⊢ ∃y∀x(x ∈ y ↔ φ) [Unrestricted Comprehension axiom]
2. ⊢ y ∈ y ↔ (y ∈ y → A) [From 1., x/y, y/y, φ := x ∈ x → A]
3. ⊢ (y ∈ y ∧ (y ∈ y → A)) → A [Instance of Pseudo-Modus Ponens]
4. ⊢ (y ∈ y ∧ y ∈ y) → A [From 2. and 3., Substitution]
5. ⊢ y ∈ y → (y ∈ y ∧ y ∈ y) [Instance of Idempotence of ∧]
6. ⊢ y ∈ y → A [From 5. and 4., Rule Transitivity]
7. ⊢ (y ∈ y → A) → y ∈ y [From 2., Simplification]
8. ⊢ y ∈ y [From 6. and 7., Modus Ponens]
9. ⊢ A [From 7. and 8., Modus Ponens]

Similar arguments like Slaney’s [49] break apart as well, since those heavily
depend on the stronger principle of Permutation, which is not even valid in cCL.
Finally, there is another argument, by Routley et al [45, p.367], involving ◦ and
both directions of Rule Residuation:

1. ⊢ ∃y∀x(x ∈ y ↔ φ) [Unrestricted Comprehension axiom]
2. ⊢ y ∈ y ↔ ((y ∈ y ◦ y ∈ y) → A) [From 1., x/y, y/y, φ := (x ∈ x ◦ x ∈

x) → A]
3. ⊢ y ∈ y → ((y ∈ y ◦ y ∈ y) → A) [From 2., Simplification]
4. ⊢ y ∈ y → (y ∈ y → (y ∈ y ◦ y ∈ y)) [From Rule Residuation and

Identity11]

11Consider the instance of Identity ⊢ (y ∈ y◦y ∈ y) → (y ∈ y◦y ∈ y); using Rule Residuation,
i.e. ⊢ (A ◦B) → C ∴⊢ A → (B → C), where A/y ∈ y, B/y ∈ y and C/y ∈ y ◦ y ∈ y, we have
⊢ y ∈ y → (y ∈ y → (y ∈ y ◦ y ∈ y)).
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5. ⊢ y ∈ y → ((y ∈ y → (y ∈ y ◦ y ∈ y)) ∧ ((y ∈ y ◦ y ∈ y) → A)) [From 4.
and 3., ∧-Composition]

6. ⊢ y ∈ y → (y ∈ y → A) [From 5, Conjunctive Syllogism and Rule Transi-
tivity]

7. ⊢ (y ∈ y ◦ y ∈ y) → A [From 6., Rule Residuation]
8. ⊢ y ∈ y [From 2. and 7., Simplification and Modus Ponens]
9. ⊢ y ∈ y → A [From 8. and 6., Modus Ponens]

10. ⊢ A [From 8. and 9., Modus Ponens]

Due to the properties of ◦, this argument does not go through using cDRdQ.
On the one hand, for any A, ⊢ A ◦ A, since by definition this is equivalent to
Aristotle’s thesis, ⊢∼ (A ↠∼ A); and, for any A and any B, ⊢ (A ↠ B) ↠
(A ◦ B), which by definition is equivalent to Boethius’ Thesis, ⊢ (A ↠ B) ↠∼
(A ↠∼ B). However, ◦ is not the residual of ↠, as we saw in cCL, so the
argument is blocked by rejecting steps 4 and 7. The fact that both directions of
Residuation and Rule Residuation fail in cCL and cDRd means that in these
logics ◦ is not a fusion connective, as it is in R. The failure of Residuation
principles, also known as Exportation and Importation (or, jointly, as Portation),
suggests that ◦ is better interpreted as a compatibility connective in cCL and
cDRd, like that addressed in Chrysippus’ account of (connexive) implication.

In Weber’s näıve set theory [63, Ch. 5], these versions of Curry’s paradox
are avoided by using a substructural logic, called subDLQ, which (1) instead
of an extensional conjunction ∧ uses a non-idempotent intensional conjunction
&, and (2) uses a relevant conditional → that does not validate Contraction
to formalize set-theoretic axioms, and an irrelevant conditional ⇒ that obeys
the Deduction Theorem. Thus, he avoids the Contraction-Curry thanks to his
relevant conditional; he avoids the Pseudo-Modus-Ponens-Curry by rejecting
(A ∧ (A → B)) → B while accepting (A&(A ⇒ B)) ⇒ B; and he avoids
the Residuation-Curry by dropping the idempotent conjunction ∧ in favor of the
non-idempotent intensional connective &.

In the case of cDRdQ, less machinery is needed to avoid the Curry paradoxes.
Indeed, in cDRdQ no Deduction Theorem will hold, since the rule Modus Ponens
holds while Pseudo-Modus Ponens does not, even when phrased as (A ◦ (A ↠
B)) ↠ B, which can clearly be seen to go against depth relevance. Weber wants
some version of Pseudo-Modus Ponens so that a Deduction theorem is available
and hence an argument can be made against the object-theory vs. meta-theory
distinction. Clearly, cDRdQ still has that distinction in place, for Modus Ponens
is not valid in the language but over the language of cDRdQ; moreover, cDRdQ
has a classical meta-theory rather than a relevant and connexive one matching
the object-theory.

In terms of mathematical strenght, a näıve set theory based on cDRdQ would
be weaker than Weber’s, since the latter can resort to the irrelevant conditional
where the relevant conditional falls short of demonstrative power, but would be
similar to Routley’s DST [42, §6], based on DKQ, or to Brady’s based on DJdQ.
However, the connexive features of the logic can yield interesting differences,
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especially regarding subsets, complements and cardinality of powersets. In [30],
a connexive algebra of classes is proposed where no class is contained in its
complement —an idea that emulates Aristotle’s thesis12—, and where the empty
class is contained in itself but in no other set —and similarly for the universal
class—, meaning that the number of subsets of any given set is 2n − 1 instead of
the usual 2n. While similar results may be expected using cDRdQ, the resulting
theory would differ from McCall’s since his is a consistent approach to connexive
set theory.

Other topics addressed by Weber’s work, like a suitable theory of identity
that does not clash with the axiom of Extensionality, are needed to assess the
suitability of a logic for näıve set theory. So this should also be taken into
account regarding cDRdQ, for if no such theory of identity is available then the
Hinnion-Libert paradox will trivialize näıve set theory [63, pp.122–3]. And if
cDRdQ cannot handle the Extensionality axiom (and substitution principles)
without trivializing the theory, then one may consider dropping it in favour of
some form of Leibniz equality law as in [55, §2.3].

Alas, connexive set theory, näıve or not, has seldom been investigated. So
far, due to its ability to avoid Curry paradoxes, it seems that cDRdQ may be a
suitable foundation for connexive näıve set theory or a non-extensional version
of it. But this ought to be properly explored in future work.
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