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ABsTRACT. We construct, in several ways, Fine-style frame models of the relevant logic B which
verify exactly the theorems of B but differ from the canonical model in some of their properties: they
contain multiple points representing the same (formal) B theory, or their points fail to represent some
formal B theories (in fact, fail to represent almost all of them). We briefly discuss the implications of
this for the adequacy of frame semantics for relevant logics.

1. INTRODUCTION

Relevant logics are logics that model a meaning for the implication connective — richer than
the material semantics, rejecting some principles of classical and intuitionistic logic, especially
weakening ((A — (B — A))). Almost all relevant logics studied so far can be seen as extensions of
a simple logic called B, and semantics for them have been constructed by elaboration of semantic
systems for B. Routley-Meyer models [1] are one such semantic system, in which models are sets
of points, often called “worlds,” and the semantics of — involves a ternary relation on worlds. This
is seen as a generalization of the binary accessibility relation in Kripke models of modal logics (see
[2]). Many philosophical interpretations of the ternary relation have been proposed [3][4][5]. Kit
Fine demonstrated [6] a different semantics for B, also based on frames of points, but equipped with
a binary operation o instead of a ternary relation, which can be conceived of as “applying the rules of
a theory (a point) to another theory (point).” This semantics has a very intuitive completeness proof:
there is a canonical model whose points are all the formal theories with respect to B, which satisfies
exactly the theorems of B. However, the definition of a Fine model involves complicated conditions,
which seem designed to be satisfied just by this model. So far it has been plausible that the only
Fine models satisfying exactly the theorems of B might be those in which each point represents (in
a sense to be made precise) a unique formal theory, and every formal theory is represented by a
point. Such models are so similar to the canonical model that they are almost a canonical model
in disguise. (For a similar worry, see the conclusion of [7].) Thus the semantics would beg the
question: we are using it to argue that B is interesting, but it would covertly presuppose there is
something interesting about B formal theories.
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Nor can this problem be easily avoided by switching semantics: as shown in, e.g., [8], sec. 4,
Fine and Routley-Meyer models can be constructed out of each other in a very natural way'. Thus if
there is some artificiality about the points in all Fine models, there is also some artificiality about
the filters of points in all Routley-Meyer models. The concern is merely easier to see from the Fine
perspective, where the correspondence between theories and model components is more primary.

Recently, Restall and Standefer [9] introduced a new semantics for propositional relevant logics,
in the same spirit as Routley-Meyer and Fine, using a multiary version of the Routley-Meyer relation.
This relation is considerably more elegant than the ternary one, but does not claim to be any more
than a generalization of the same idea, and these authors also prove a form of equivalence (see [9],
Lemma 16). Indeed the completeness proof for RW™ in [9] uses a model derived from a canonical
Routley-Meyer model. If the avoidance of our problem required a change of semantics, it may
require a more severe change, perhaps content semantics as in [10] - but as it turns out it does not.
We show that not all Fine models of exactly B do have the aforementioned ‘artificial” properties,
and we construct several counterexamples. We hope this makes the semantic argument for use of B
more robust. At the same time, it raises a new concern about the semantics.

In the next section we give reasons to be interested in logic as theory-building system, which
can motivate Fine’s frames, but we hope that, because of formal similarities between semantic
systems, our results will also be of interest to those who work with ternary (or multiary) accessibility
relations, from other philosophical motivations.

After introducing the logic B in section 2, in section 3 we construct models with distinct “twin
points” representing a single formal theory. First we do this with a construction that glues models
together, then we give an alternate proof by taking a reduct from a canonical model. In section
4, we nonconstructively prove the existence of models such that there are “missing theories” not
represented by any point in the model. In sections 5 and 6, we obtain models with missing theories
in other ways, first by a pseudo-recursion-theoretic argument, and then by a simpler set-theoretic
argument, which relies on set-theoretic assumptions.

2. PRELIMINARIES

We assume knowledge of propositional logics, Hilbert proof systems and induction on formula
complexity, length of proofs, etc. In later sections we will assume basic knowledge of first-order
model theory, recursive functions, and set theory. Assume we have a fixed set of atomic propositional
symbols At, and the connectives A, V, =, —.

2.1. B. The logic B is given by the following Hilbert system:

Axioms: 6) (A>BAA->C)>A—>(BAO)
(3) (AAB) > B ©) ~~A—A
4) A— (AVB)
(5) B> (AV B Rules:

IFor propositional logics. ‘Fine’s semantics’ also refers to a way of modifying frame semantics for relevant logics to
accommodate quantifiers, but that is not how we use the term here.
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A B A— B C—->D
M AAB ) (B—>C)—>(A-> D)
A A— B 5

2.2. Semantics. A pre-model is a 7-tuple (T, P, ¢, 0, C, %, v), such that:

Tisaset, PCT

teT

0:TXT—->T

C is a partial order on elements of T
*:P—> P

v:T —2M

For a pre-model M = (T, P, ¢, o,C, *,v), we will refer to its components as Ty, Py, {1, €tc. as
needed.
A pre-model is a model if it satisfies the following:
(1) If s C ¢, then
(a) v(s) Cv(p)
(b) uosCuotforallueT
(c) souCtouforallueT
2) tot=tforallteT
3) p*=p
4) If pc gforpe Pand g€ P, theng* C p*
) viy= N v(p)

tCpeP
(6) If tou C p, where p € P, then there are ¢, r € P witht C g and u C r such that 7o r C p and
goucp
We may refer to these points (T") as theories, P as prime theories or prime points, and ¢ as the
logic. Define the verification relation = C (T X ®) (which we may write =) recursively on formulas
(let @ (or Day) be the set of all formulas formed from At.)

(1) fAeAt,rEAIfA ev(r)
2)tEAABifftEAandtE B

(3) tE AV Biffforevery pe PwheretC p,pEAorpkEB
4) tEA— Biffforeveryu € T whereu =A,toul= B

(5) t E-Aiffforevery p e PwheretC p, p* £ A

For formulas A, we say M = A (M is a model of A, M verifies/satisfies A) if {3y Epr A, and A is
valid if M = A for every model M. It is well-known that exactly the theorems of B are valid, but we
will re-prove this in greater generality later in this paper.

Define the derivation relation +C (P(®) x @) for B, inductively, as follows. (P(®D) is the powerset
of @.) It relates a set of formulas to a formula.

(1) IfAel,THA
2) fTr'+A,T'+B,thenI'FAAB
(B) If'+Band (B— A)e B, thenT'+ A
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LetI' € @ be called a formal theory if, for all A such thatI' + A, A € T".

Call a set I" prime if, whenever AV B eI, eitherAeTor BeT.

Define the application operation o: ' o A = {B | dA[A € A, (A — B) € I']}.

Define the Routley star operation -*: I'* = {A | =A ¢ ['}.

Let Th be the set of formal theories, Pr the set of prime formal theories.

The canonical model is the pre-model M¢c = (Th,Pr,B,o,C,-*, AI.(I' N At)). The standard
completeness proof proves that the canonical model is a model, and for each formal theory ¢,
tEuc AiffA et

2.3. Explanation of the Semantic System. We take roughly the view of Fine semantics advocated
by Logan in [11]: the points of a Fine-style model represent theories, about whatever content is
referred to by the symbols in At. A model is not a representation of a structure satisfying a particular
theory (as with first-order logic models), but a representation of a way the class of all theories might
be, or of a ‘theory-building practice’ or ‘theory space’ which lays out conditions under which a
theory is proper qua theory. Thus the above model postulates specify the ways that ways theories
could be, could be. These theories are not necessarily formal theories, they merely meet some vague
notion of theory (see the ‘bodies of information’ in [12].)

t o u represents the set of all conclusions that can be derived by using the ‘derivation methods’
endorsed by ¢ on the assumptions in #. Thus the meaning of ¢ = (A — B) given by the definition of
k= is that one of these ‘derivation methods’ concludes B, given A.

¢ is the theory whose ‘derivation methods’ are exactly those that all theories (in our theory space)
are already closed under (therefore £ o ¢t = 1), and we assume that any good theory-building practice
will consider this a theory. ¢ C u means that # is more informative than ¢. The verification relation
t = A means that ¢ is ‘committed to’ A. A prime theory p is intuitively one in which there is no
purely disjunctive information - if p |= (A V B), then p | A or p £ B. (From the definition of |, this
formal property is easily seen to be necessary for membership in P, although perhaps not sufficient.)

It is a principal difference between our style of models (Fine-style) and Routley-Meyer models
that we allow points representing non-prime theories; in Routley-Meyer models all points are taken
to be prime, and are often called ‘worlds’ rather than ‘theories,” and [ represents what is true at
a world. (In a ‘world’, A V B presumably can’t be true unless one of the disjuncts is true.) Thus
there is a philosophical difference (in spite of the mathematical connection) between the two kinds
of semantics - if you believe that theory-building is the correct way to explain relevant logics, you
might prefer Fine models, since non-prime theories are common in real life.

p* is the theory which is committed to whatever is not excluded by p. (That this must be
considered a ‘theory’ is perhaps the most questionable aspect of this system.) v(t) is the set of atomic
propositions to which ¢ is committed.

In the canonical model, these vague notions are instantiated by precise notions applying to formal
theories, and the Key Lemma (¢ = A iff A € 1) verifies that these precisifications agree with the
intuition behind the semantics.

But why is all this an appropriate basis for a logic? Even relevant logicians do not all agree that it
is. It is not our intent to survey all possible objections, but as one good example, we consider Brady’s
[10], where he argues that neither Fine-style nor Routley-Meyer-style models for relevant logics
are well-motivated. We reconstruct (one of) his arguments as follows: the — connective should
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represent one of two things, truth-preservation or meaning-containment. If — is truth-preservation,
it should follow classical laws. So if relevant logic is worth doing, — in relevant logics should
express meaning-containment. But frame models provide too many possible semantics (given by
different sets of optional postulates corresponding to axioms), and frame semantics itself provides
no motivation for which of these kinds might describe meaning-containment.

We argue that the notion of (relevant) logic as the ‘universal theory-building toolkit’ is a third
option, on which A — B is not necessarily a claim of truth-preservation or of meaning-containment.
First, we presuppose that the meaning of a proposition such as (A — B) is always relative to a theory,
and in the context of a fixed theory ¢, we say A — B is the claim that whenever we analyze some
body of data u using the methods of ¢, and u contains A, we should conclude B is a consequence of u.
These ‘methods,” and the meaning of ‘a consequence,” may vary depending on ¢ - in particular, they
could involve either preserving truth, or drawing out contained meanings. Logic is then thought of
as a special theory, such that all theories worthy of the name are closed under logical consequence.
So ‘(A — B) is a theorem of logic’ means that every proper theory containing A contains B.
What is a proper theory, and therefore what is in one’s ‘logic’, depends on one’s theory-building
practice, which may have prejudices toward truth-preservation, meaning-containment, both, neither,
or something else. But all these practices seem to have a pattern in common - they define a space of
theories that looks like a Fine model. We are interested in those theorems that are in the logic of
every theory-building practice. The canonical model shows that there is a ‘weakest’ theory-building
practice whose internal logic is just this core of logic, which all the varieties of theory-builders can
agree on. Thus our interest in non-canonical models of exactly B - these represent theory-building
practices other than the ‘weakest’ one whose internal logic is just as general (weak). For example, if
we could consider only recursive theories to be good theories, would this theory-building practice
provide some distinctive logical principles that are not available to all theory-building practices? We
will answer a question similar to this (though weaker) in what follows.

By nature, our view does not claim that logic isn’t about truth-preservation, or about meaning-
containment - sometimes. But since the activity of theory-building is more general than both, and
turns out to have a non-trivial ‘logic’ of its own, we take this to be a conservative neutral foundation
for logic.

Bear in mind that Brady’s complaint that there are too many possible frame semantics for
meaning-containment can also apply to theory-building; we do not have a conclusive argument that
the model postulates corresponding to B are the right ones. However, there are good arguments to
reject the postulates used by stronger logics such as E and R (see [11]); probably, if anything, the
semantics should be weaker than the one presented here?. So the formal models we consider are
perhaps at least a special case of the right models for theory-building.

3. TwiN PoiNnTs

Let M be a model. Let two points ¢, u € Ty be called rwin points if, for all formulas A, t E A
iff u = A. The canonical model has no twin points, because any two different points are different

For example, it might not validate distributivity; Brady’s [10] argues for a distribution-free logic, and perhaps we
should take theories built by use of this logic seriously as theories.
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sets of formulas, and verify exactly the formulas they each contain. Now we construct a model of
exactly the theorems of B, but containing twin points.

Preliminaries. Let M and M’ be models and - : Ty; — Ty a function. - is an isomorphism if it is
bijective and:

(1) (tou) =t ou’

(2) te Py ifft' € Py

3) (") =p”

4) tCTy siff ! Ty s’

(5) vu@) = v (t')

Lemma 1. Let M, M’ be isomorphic models with isomorphism -, and t € M. Then for all formulas
A tEn Aifft Ew A.

Proof. By induction on the complexity of A.

Base case: A is atomic. Then A € vy (?) iff A € vy (#) by definition.

Inductive cases:

A=BAC:tEy BACifft ey Bandt =y Ciff ¢ |y Band ¥ |y C,by IH, iff ¢ Eppr BAC.

A = BV C: Note that p is a prime extension of ¢ in M iff p’ is a prime extension of ¢ in M’. So
t E BV C iff for all prime extensions p of tin M, p = B or p =y C, iff for all prime extensions p’
oft inM’',p" EM' Borp’ Ey C,ifftt’ Eyy BV C.

A=B—->C:tEy B— Ciffforalluin M suchthat u Ep B, topy u =y C, iff forallv e M’
such that v = B, ¢’ o v |y C. This is because, by IH, these v are exactly the points which are u’ for
someu € M,uly B.NowlettouEy C. Thent' ov =1 ou’ = (tou) Ep C, by IH. Conversely,
the u € M such that u |=); B are exactly the ones such that u’ |5y B. Now let#’ o u’ =pp C. Then
(tou) Em B,sotoulky BbyIH. This completes the iff, and the latter condition is 7 3 B — C.

A = =B: t Ey —B iff for all prime extensions p of ¢ in M, p* ¥y B, iff for all prime extensions
p oft’ in M’, (p’)* ¥mr B, (because (p')" = (p*)’, and we apply IH), iff 7 3 —B. O

The Twin Points Construction. Let M be a model, and let M’ be some model whose points are
disjoint from T, and which is isomorphic to M. (Everyone knows two such models exist.) Let -~
denote the inverse of - . We define the model N = (T3 U Tyyr, Pag U Py, €1, E, 0, %, v) wWhere the
last four components are defined as follows:

tCy sifft,seTyandt Ty s,ort,s € Ty and t Ty s

to s = t oy s if both theories lie in M

to s =toy sif both theories lie in M’

tos=t oy sifte M,se M’

tos=t oysifteM ,seM

(Note that an application ¢ o u lies in the same half of the model as u.)

= spy(0)ift € M, pp(r)ift € M3

v(t) = vy (1) if t € M, vy (¢) otherwise.

It follows that v(r) = v(¢’) for all t € M.

3We do not write = as a superscript here for readability, but it is the same function.
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Note that the choice of ¢ is the only aspect of N that is not symmetrical.
Theorem 2. N is a model.

Proof. We must verify all the model postulates. First, C is a partial order: it is well known that a
disjoint union of two partial orders is a partial order.

(1) Suppose s C t. Then we know either s, ¢ both lie in M or both in M.
(a) v(s) C v(r): if 5,t € M, true because M is a model. Otherwise, s~ C ¢, so v(s) =
vpm(sT) Cvy(t7) = v(o).
(b) uosC uot: Cases depending on (a) whether s, ¢ lie in M, (b) whether u lies in M.
11: because M is a model
10: uos=u"oysCu oyt=uot
0l: uos=uopy sCTu oyt =uot (using the fact that M’ is a model)
00: because M’ is a model
(c) souLC tou: Same case breakdown.
11: because M is a model
10: sou=soppuC t oppu=tou
Ol: sou=s"opyult oyu=tou
00: because M’ is a model
Q) IfteM,ltot=tIfteM lot=opyt=Loyt ) =) =t
(3) If p € Px, where X is either M or M’, p*™*V = p*** = p.
(4) if p C g, then both p, g lie in M or both in M’. ¢* C p* holds because both M, M’ are
models.
(5) v(?) is the intersection of v(p) for all prime extensions of p: Note that if # € M the prime
extensions of ¢ (call this set E(¢)) in N are exactly its prime extensions in M, because ¢ C p iff
t Ty p,and p € M is prime in N iff it is prime in M. Therefore v(¢) = vy (t) = () vu(p) =
E®)
(M v(p). The same argument applies to M’ points.
120)

(6) LettouC p, p prime. There are g, r extending ¢, u suchthat gou C p,tor C p:

Note that either u, p are both in M or both in M’. So we have cases based on whether (a)
teMand (b)u,pe M.

11: because M is a model, and all prime points of M are still prime in N

10: ¥ ou = tou C p, and we obtain suitable ¢, r € Py such that g o u,t’ o r C p. Since
for=tor,torC p. And ¢~ is a prime extension of 7, and ¢g" ocu = gou C p. So g~, r are
the required extensions.

01: Similar, but get extensions ¢, r of 1=, u and use ¢’, r.

00: because M’ is a model

O

Theorem 3. For each point t € Ty, and each formula A, t =y A iff t En A. For each point t € Ty,
and each formula A, t Epp A iff t En A.

Proof. By induction on the complexity of A. Within each step, without loss of generality, let r € T,;.
If € M’ the arguments are identical, with -" and -~ switched.
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Base Case: A is an atom. Then by definition vy (f) = vy(f), so A € vy(2) iff A € vy (2).

Inductive Cases:

A=BAC:tEyBACIifftEy Bandt =y Cifft Eyy Band t |y C (by IH), iff £ |Epy B A C.

A = BV C: tis incomparable with all points of M’ in Cy, so its prime extensions in N are (by
definition of primes of N) exactly the prime extensions of # in M, and by induction these points
satisfy B (or C) in N exactly if they do soin N. So ¢ Ey B Vv C iff for all prime extensions p of ¢ in
N, p En Bor p En C, iff for all prime extensions pof tin M, p ey Bor p Ey C,ifft Ey BV C.

A=B — C:Lett Ey B— C, whichholds iff forall u € N,if u =y B, thentou Ex C. So
if u € M and u |y B, by induction, u =y B, sotoy u Exy C. Butt oy u = t oy u, therefore, by
induction again, t oy u F=p C. Sot Epy B — C.

Conversely, let =3y B — C, and let u € N and u =y B. There are two cases. First, letu € M. So
ukEy Bandtoyu =toyu k= C, as required. Second, letu € M’. Sou =y B. Thentoyu =t oy u.
But since -’ is an isomorphism, t' oyp u = (fopy u”)’, and by lemma 1, u™ |y B,sot oy u™ Ey C,
so by lemma 1 again, (f opy u™) Epr C. Then by inductive hypothesis, ¢’ oy u |En C, as required.

A = =B: t Ey B iff for all prime extensions p of ¢t in N, p* £n B, iff for all prime extensions p
of t in M (which are the same) p* £y B, iff t Ey —B. O

Corollary 4. N contains twin points.

Proof. For any t in M, t,t satisfy the same formulas in M, M’ by lemma 1, so they are also twin
points in N by the theorem above. O

3.1. The Problem with Twin Points. The problem with twin points in Fine models is that these
models are supposed to represent the space of possible theories, and the content of a theory, if it is
given by any data in the model, seems like it should be given by the set of formulas verified by the
theory. So, how can twin points be theories and yet be distinct?

The above construction gives a hint: it creates a model which is really two models, and no theory
of the one can be considered an ‘extension’ (Ey) of a theory of the other. We might consider the
atomic propositions to be meant entities, independent of language, and points of a theory to be
concrete expressions of a body of propositions in language. The two submodels M, M’ may contain
the same information, but written in different languages. Think of extensions as containment of
one set of written sentences in another. No theory of M’ is an extension of a theory of M, if the
theories in M are sets of English sentences and the theories in M’ are sets of Spanish sentences.
But we can still define an operator # o u that works across languages, applying pure propositions
to pure propositions and then writing down the result, so that ¢ oy u is always written in the same
language as u. But this is not a sensible way to define notions. Why is our application operator
language-insensitive but our notion of extension is not? At any rate, we have proven that the
conditions on Fine models are not so prescriptive that they exclude such bad notions, nor do these
bad definitions alter the theorems of B.

Another perspective on twin points is that they allow us to model a notion of theories where
theories sometimes contain strictly more information than is in their set of formulas. Perhaps they
contain some fuzzy information, levels of importance, associations, emotional judgments, etc. which
do not impact their logical consequences. But we would prefer not to introduce new formalism
for such notions, and insist that every kind of theory content can in principle be translated into
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indicative propositions, using a larger vocabulary of symbols. This motivates a better construction
of twin points:

The Symmetric Canonical Model. Let At’ be a set strictly larger than At, and define formulas,
models etc. over At” as above. Let M be a model with respect to At’. Now consider it as a pre-model
wrt. At, by replacing the valuation function v(¢) with v(¢) N At. Call this pre-model the At-reduct of
M.

Lemma 5. Let M be the At-reduct of N. For each pointt € M, and A € Opy, t Epy Aifft En A

Proof. By induction on the complexity of A.

Base case: If A € At, A e vi(1) iff A € vy(r) N AL, iff A € vp(2).

Inductive cases:

A=BAC:tEy BACifftEy BandtEy CifftEy Bandt Ny C,iff t Ey BAC.

A=BVC:tEy BV Ciff for all prime extensions p of tin M, p |y B or p |Ep C, but this is
the same condition as for r Ey B V C because Cy=Cy and Py, = Py.

A=B—->C:tEy B—- Ciffforallu € Msuchthatu Ey B, topy u |y C. Butthe uin M
are the uin N, and B € ®pt, so u =y Biff u =y B by IH, and oy = oy, so this is the same as the
condition for ¢t Ey B — C.

A = =B: t Ep —B iff for all prime extensions p of ¢ in M, p* [~y B, which again is the same
as the condition for ¢ Fy —B, because the -j, = -3, and the prime extensions are the same in both
models. O

Lemma 6. Let M be a reduct of N, and let N be a model. Then M is a model.

Proof. We must prove all the model postulates.

(1) Suppose sC tin M, and u € M.
(a) Then vy(s) C vy(?) since N is a model, so vy(s) N At C vy(r) N At
(b) uopyrs=uonysCuoynt=uoyt Notesomething about this condition: it is obviously
true in M because it does not mention the valuation, the only component of M that
differs from N. When this applies from now on, we will say ‘trivial.’
(c) trivial
(2) trivial
(3) trivial
(4) trivial

(5) vu() =Atnwy() =AtN N wip)= N (Atnwn(p) = N vu(p)
tCpeP tCpeP tCpeP
(6) trivial

O

Now let N be the canonical model with respect to At’, and let M be its At-reduct. Then let o
be any permutation of At" leaving At fixed, and extend it to formulas and sets of formulas in the
obvious way: (A A B)o = (Ac A Bo), (A = B)o = (Ao — Bo),I'c = {Ao | A € T'}, etc. This is
clearly an injective function on sets of formulas, with inverse given by the extension of 0.

Lemma 7. Let t be a formal theory over At. to is also a theory.
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Proof. Let to + A. We will do induction on the length of derivation of the + judgment, to show
A€to.

Base case: A € to. There is nothing to prove.

Inductive cases:

A = BAC,to v+ B,to + C: Then B, C are in to, so there are B’, C’ € tsuchthat B= B'o,C = C'o.
Since ¢ is a theory, B A C’ € t,and so (B’ AC")o = BAC € to.

(B — A) € B, to + B: By the substitution property, (Bo~ — Ao ") is a theorem of B. And by IH,
B € to, so Bo~ € t. Thus since ¢ is a theory, Ac~ € ¢,80 A € to. O

Since the inverse of ¢ - tois ¢t > to~, o is a permutation of the points of the canonical model.
It is also an automorphism (an isomorphism from the canonical model to itself).

Lemma 8. ¢ — fo is an automorphism of M, the At-reduct of N.

Proof. There are many conditions to prove.

(1) touwo ={B| (A > B) e t,A € uo ={Bo | (AA)A — B) € t,A € u} = {Bo |
(JA0) (Ao — Bo) € to, Ao € uo} = to o uo

(2) Let p be prime. We must show po is prime; the converse is immediate by applying the same
argumentto 0. So,if AV B € po,(AV B)o™ € p,soAc™ V Bo~ € p,soeither Ao~ € p
or Bo~ € p, so either A € po or B € po.

(3) (p")o ={B|-B ¢ p}o ={Bo | -~B ¢ p}={Bo | -~Bo ¢ po} = (pc")

(4) t C siff to C so by basic property of images.

(5) v(to) = to N At = £ N At, because o leaves At fixed, so any atom A is in ¢ iff it is in 7o, and
this last expression is v(¢), so v(to) = v(¢) as required.

O

It now follows from lemma 8 and lemma 1 that M contains many twin points, because for every
o leaving At fixed and every ¢, ¢ and fo satisty the same formulas in M.

4. MIisSING THEORIES

Another way models may differ from the canonical model is to be less full. For every formal
theory I, there is a point in the canonical model which verifies exactly the formulas in I', namely I’
itself. For a general point ¢ in a model, let 7 be the set of formulas A such that 7 | A. We will say a
model M has a missing theory I if there is a formal theory I" such that 7 # I for all 1 € T),.

Our one trick for constructing models with missing theories is to construct countable models,
because a countable model necessarily has missing theories.

Justification of the Trick. For any set of formulas S, let K(S') be the set of classical consequences
of S.

Lemma 9. K(S) is a B formal theory.

Proof. The rules of the B Hilbert system are classically admissible, and the axioms are classically
valid. Therefore, all the theorems of B are classically valid. Now let K(S) + A, and we prove by
induction that A € K(S).

Base Case: A € K(S): there is nothing to prove.
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Inductive Cases:

A =BAC, K(S)+ B, K(S) + C. Then by induction B,C € K(S), and in every classical
valuation where B, C are both true, B A C is true. So every valuation satisfying S satisfies B A C, so
BAC € K(S).

(B— A)eB,K(S)F+ B: So =BV Ais aclassical validity, so if a valuation satisfies S, it satisfies
B (by IH), and therefore also A. O

Lemma 10. Let At be infinite. There are uncountably many formal theories.

Proof. There are uncountably many sets of atoms S, and K(S) satisfies exactly the atoms in S,
because there is a classical valuation making exactly the atoms in S true. Therefore there are
uncountably many distinct theories of the form K(S). O

4.1. Nonconstructive Existence. First we will prove the existence of a countable model noncon-
structively, using the fact that B models are essentially an elementary class. Define a first-order
theory BMod as follows:

The language of BMod consists of one unary predicate A(-) for each atom A € At, a binary
function symbol o(-, -), a binary predicate symbol (-, ), a binary predicate E (-, -), a unary predicate
P(-), and a constant symbol ¢, and the special predicate =, with its usual semantics (M, v = (x = y)
iff v(x) = v(y)).

BMod has the following axioms, where A is a schematic letter standing for all the predicates A(-)
for A € At:

(1) ¥x,y,2(E (x,y)A E (y,2) L (x,2))
(2) YxC (x,x)
(3) Y, y(E (L AE (y,x) = x =)
(4) Yx(P(x) & Jy(x(x,y)))
(5) Vx,y,2(+(x,y) A #(x,2) =y =2)
(1) (@) Ys,t(C (s,1) = (A(s) = A(D)))
(b) Vs, t,u(C (s,t) =C (o(u, s), o(u, 1))
(c) Vs, t,u(C (s,t) =C (o(s, u), o(t, u)))
(2) Yt(o(l,1) =1)
(3) VYp,q,r(x(p,q) A*(g,r) = p =)
@ ¥p.q.p',q' (€ (p,q) A=(p,p’) A(q.q") >E (¢',p')
(5) Yi(A(r) & Yp(C (&, p) A P(p) = A(p))
(6) VYt,u, p(C (o(t,u), p) A P(p) — Iq,r(P(g) A P(r)A C (t,))A T (u, A C (o(t,r), p)A C
(o(g, u), p)))
Note that in any structure S satisfying the above axioms, C3 is a partial order, and 5 is a function
defined on the extent of P. For each point ¢in S, let v(f) = {A € At | A3 (¢)}. The result is a pre-model
we will call P(S).

Theorem 11. P(S) is a B model iff S satisfies the axioms of BMod.

Proof. By inspection, most of the axioms of BMod are logical translations of the conditions given
in section 2.2, and the extra conditions that C is a partial order and * is a function defined on P.
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The only difficulty is with the axioms involving A, which we claim hold iff v satisfies the model
conditions (1)(a) and (5).

Vs, #(C (s,1) = (A(s) = A(?))) holds for all A iff, whenever s C ¢t in P(S), if A € v(s), A € v(¢t),
which is just the meaning of v(s) C v(¢).
Yt(A(t) & Yp(C (¢, p) A P(p) — A(p)) holds for all A iff, for every ¢, each A holds at 7 iff that A
holds at all prime extensions of ¢, which means A € v(¢) iff A € v(p) for all prime extensions p,
which is justif A € (" v(p). O

Now we extend BMod to track which theorems are true in a model:

Lemma 12. For each formula A in the language of B, there is a first-order formula ¢(t) with one
free variable in the language of BMod such that for all models S of BMod and t € S, ¢i(t) holds iff

1 Epes) A

Proof. By induction on the complexity of A.

Base case: If A is an atom, the requisite formula is A(#), because A(f) holds in § iff A € vp(s)(?)
which holds iff ¢ E=p(s) A.

Inductive cases:

A = BAC: ¢prc(t) = ¢p(t) A ¢ct. Now ¢4(2) holds iff ¢p(t), pc(¢) hold, iff t E B,t = C, iff
tE A.

A =BV C: ¢pyc(t) =Vp(P(p)A C (t, p) = ¢p(p) V dc(p)). Now ¢4(¢) holds iff, for all prime
extensions p of ¢, either ¢g(p) or ¢c(p) holds, which by IH is equivalent to either p | Bor p E C
holding.

A=B— C: ¢pc = Yu(pp(u) — ¢c(o(t,u))). Then ¢(¢) holds iff for all u, if ¢pg(u) holds, then
¢c holds of ¢ o u. But by IH that is equivalent to saying if u |= B then t o u |= C, as required.

A ==B: ¢_g =Yp,q(P(P)A C (t, p) A #(p,q) = —~(¢dp(g))). So ¢4(¢) holds if for all p that are
prime extensions of ¢ and all ¢ that are equal to p*, ¢ does not hold at g(= p*). But by IH, this
happens just if p* £ B, as required. O

For any model M, we can define A(-) with extent {t € Ty | A € v(¢)}, and the result is a structure
S with P(S) = M, which by the above theorem is a model of BMod. So the canonical model
demonstrates that there are models of BMod.

Theorem 13. There exists a countable model M such that M |= A iff A € B.

Proof. Let M’ be a model in which ¢ verifies exactly the theorems of B. As remarked, M’ = P(S)
for some structure S satisfying BMod. Let T(S) be the theory consisting of all sentences in the
language of BMod satisfied by S. Since this language is countable, by the Lowenheim-Skolem
theorem, there exists a countable substructure S’ of S satisfying 7(S). So P(S’) is a countable
model. Furthermore, {5+ Epcs/) A iff ¢4(€) holds in S’, but this happens iff ¢4(¢) holds in S, by the
previous lemma, and since S’ is a model of T(S), this holds iff A € B. O

4.2. Constructive Existence - Setup. The Lowenheim-Skolem theorem is fine, but it doesn’t tell us
much about the model we’ve gotten. It has many missing theories, but which ones? We would like
to get more explicit countable models. We will still do this by dropping points from the canonical
model, but we will get a characterization of which theories are not missing.
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More Lemmas. This material is mostly a standard part of the completeness proof for B.
Lemma 14. All intersections of formal theories are formal theories.

Proof. Let T be a set of theories, and take () 7. Now let (\ T + A, and we will prove by induction
on the length of derivation that A € (N T.

Base case: A € (T, and we’re done.

Inductive cases:

A=BAC,NT+ B,NT + C. Then both B,C are in all theories ¢ in T, and since these are
theories, B A C is in all of them, soisin (7.

(B—> A)eB,Ae T: Then B € tfor all t € T, so since these are theories, A is in all ¢, so
AeNT. O

Corollary 15. For any set of formulas S, there is a smallest formal theory containing S .

Proof. The trivial theory of all formulas contains S, so there is a nonempty set of theories containing
S. Their intersection is then the unique smallest. O

Lemma 16. B € (A) iff {A} + B.

Proof. If {A} + B, then any theory containing A also derives B, so B is in all such theories,
by definition of a theory. Thus B is in the smallest such theory. For the converse, we prove
T = {B | {A} + B} is a theory, which obviously contains A, from which it follows that this is (A),
because its members are in all theories containing A.

By induction on the derivation T + B.

Base Case: B € T. There is nothing to prove.

Inductive Cases:

B=CAD, T+C,T+FD: Then C,D € T by IH, so {A} + C,{A} + D, so {A} + C A D, thus
CADEeT.

(C—>B)eB, T+ C: Thus C € T by IH, so {A} + C, so {A} + B since (C — B) is a theorem, so
BeT. O

Lemma 17. Let \; A; represent (A1 A (Ax A ...(Ay))), for some n indicated by context, and likewise
Vi Ai. The following are theorems of B:

(1) (A A-=B)— =(AV B)
(2) ~(AANB) > -AV —B
(3) (A->B)A(C—>D)—>(AANC)—> (BAD)
(4) Ni(Ai = B) = (V;Ai = V;B)
(5) Vi(Ai = B) = (N\;Ai = Vi B))
(6) \V;Ai > Awhenall A; = A
The following are admissible rules in B:
A—> B A->C

(1) A—->BAC
2) A—> B B->C

A—-C
A— B

(3) - B - —|A
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Proof. These can be derived from the Hilbert system for B. They can be found in the literature or
used as exercises for the reader. O

Lemma 18. {A} + Biff A — B is a theorem of B.

Proof. The if direction is trivial. For the only-if direction, induction on the judgment {A} + B.
Base case: B € {A}. So B=A, and A — A is indeed a theorem.
Inductive cases:
B=CAD,{A}+C,{A} + D. Then A — C,A — D are theorems, and by lemma 17, A — (C A D)
is a theorem.
(C - B)eB,{A} + C: Then by IH, A — C is a theorem, so by lemma 17, sois A — B. |

Lemma 19. Let p be a prime formal theory. Then p* is a prime theory.

Proof. p*is prime: Let AV B € p*. Then =(A V B) is not in p. Thus (=A A =B) is not in p, since p
is a theory, using lemma 17. So either —A is not in p, or =B is not in p, because if both were, their
conjunction would be in p, since p is a theory. Thus either A or B is in p*, by definition.

p*is a theory: Let p* + A. We will prove A € p* by induction on the judgment p* + A.

Base Case: A € p*: trivial.

Inductive Cases:

A=BAC, p*+ B,p*+ C: Then by IH B, C € p*. So neither =B nor —C are in p. Thus since p
is prime the disjunction =B V —C cannot be in p, and since p is a theory —=(A A B) is not in p (using
a theorem from lemma 17). Thus A A B € p*.

(B— A)€B, p*+ B: ThenbyIH B € p*,so =B ¢ p. Now (-A — —B) € B, using a rule from
lemma 17, and p is a theory, so =A cannot be in p either. Thus A € p*. O

Lemma 20. Let t,u be formal theories. Then t o u is a theory.

Proof. Lettour A. We do induction on this judgment.

Base Case: A € t o u: trivial

Inductive Cases:

A=BAC,toutr Bjitour C: Then B,C € tou by IH, so there are X,Y € u such that
X > B),Y—>C)et. ThusX > BAY — C €t,and it is a theorem of B that (X - BAY —
C)—> (XAY)— (BAC) (lemma 17); furthermore X A Y € u since u is a theory. SO BAC € to u.

(B— A)eB,toutr B: Thenby IH B € t o u, so there is some X € u, (X — B) € t.
(X - B) - (X — A) is a theorem of B (using a rule of the Hilbert system on (B — A), so
(X > A)et. ThusAetou. O

Sub-Canonical Sets.

Definition 21. Let a sub-canonical set of formal B theories be a set L such that:
(1) BeL
(2) For every formula A, (A), the smallest theory containing A, is in L
(3) Foreveryte L, t* € L
(4) Foreveryt,u€ L, toue L
(5) For every t,u € L and every prime p in L such that t o u C p, there are prime extensions q,r
oft,u such thattor C pandqou C p.
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(6) For everyt € L, and A not in t, there is a prime extension p of t in L where A ¢ p.

Let L be a sub-canonical set, and define the pre-model My = (L, P,B, C, o, %, AT'.(I' N At)), where
P is the set of prime theories in L, and o, * are as defined for formal theories in section 2.2.

Theorem 22. If L is a subcanonical set, My is a model.

Proof. There are many model postulates to verify. Obviously C is a partial order. M is closed under
* and o because L is subcanonical.

(1) Suppose s,t€ L,s Ct,andu € L:
(@) v(is) =sNAtCrNAt=v()
(b) uos Cuot: suppose A € uos. Sothereis Be s,(B— A)cu. ThenBet,s0A cuot
for the same reason.
(¢c) sou Ctou:suppose A € sou. Then thereis B € u, (B — A) € s. Then (B — A) €,
SOA €Etou.

(2) B ot contains every A € ¢, because (A — A) € B. Conversely, if B € B o ¢, there is
(A — B) € B and A € ¢, and then because ¢ is a theory, B € ¢.

(3) A e p™iff -A ¢ p* iff -—A € p, but since p is a theory and A — —-—A, --A — A are
theorems of B, this is equivalent to A € p.

(4) Let pCgand A € g*. Then ~A ¢ g, 30 ~A ¢ p,s0 A € p*.

(5) Let A € At. If A € ¢, A is in all prime extensions of ¢, so in their intersection. Butif A ¢ ¢,
then since L is subcanonical there is a prime extension not containing A, so A is not in the
intersection of all prime extensions.

(6) This property is in the definition of subcanonical set.

O

Theorem 23 ("Key Lemma”). If L is a subcanonical set, A is a formula, and t € My, t Epy, A iff
Aet

Proof. By induction on the complexity of A.

Base case: Ais an atom. ThentE Aiff A e v(r)iff A € t.

Inductive cases:

A=BAC:tEBACifftEBtEC,ift Bet,C et iff BAC €t (because t is a theory).

A =BV C:tE BVC iff for all prime extensions p of tin L, p = B or p | C, which for each
p holds iff B € Por C € P, and since p is a theory, p contains B V C for all p. But since L is
subcanonical, if BV C ¢ ¢, it is not in some prime extension, so BV C € t.

A =B — C:Let B— Cbeint. Then forall u F B, by induction, B € u, so C € t o u. Therefore,
by definition, t E B — C. Conversely, assume ¢ = B — C. Consider ¢ o (B). It must contain C. So
there is some X — C in ¢ such that X € (B), which means by lemma 18 that B — X is a theorem of
B. But then (X — C) — (B — C) is a theorem of B, so since ¢ is a theory, B — C € .

A = -B: =B € tiff for all prime extensions p of t, =B € p, iff B ¢ p*, iff p* [£ B (by IH), iff
t E —B (by definition). O
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5. COoNSTRUCTIVE EXISTENCE - PSEUDO-RECURSION-THEORETIC CONSTRUCTION

Theorems 22 and 23 show that if we can find a countable subcanonical set of theories, we will
have a countable model which verifies exactly the theorems of B, which model necessarily has
many missing theories. A subcanonical set is closed under several theory-building operations, such
as applications ¢ o u, complements p*, prime extensions avoiding certain formulas, etc. Theories
described computationally are natural candidates, if these constructions derive theories that are still
‘computational’. To that end, we prepare a recursive encoding of our logic. Assume the following
facts about recursive functions on natural numbers:

(1) There exists a constant () and recursive list-forming function append(l, n), projection function
p(l, i) such that (letting append(x1, ...x,) be an abbreviation for
append(append(...(0, x1), ...), X):
(a) p(append(xy,...x,), i) = x;
(b) there exists a length function len such that len(append(xy, ...x;)) = n
(c) for any recursive predicate P(-), there is a recursive predicate accepting exactly numbers
of the form append(xy, ...x,,) where P(xp), ...P(x,) hold

(2) There exists an injective mapping enc from formulas over At to natural numbers, satisfying
these properties:

(a) There is a recursive function f, such that enc(A A B) = f(enc(A), enc(B)), and likewise
for -, Vv, —.

(b) enc[®py] is recursive. (Call the function that tests for this property ig.)

(c) There is a recursive function p, ; such that p, 1(enc(A A B)) = enc(A), and likewise
for position 2 and the other connectives.

(3) For any finite Hilbert system, there is a recursive predicate P(p,a) which holds exactly
when p has the form append(enc(Ay), ...enc(4,)) and a = enc(4,), for A, a formula and
Ay, ...A, some Hilbert proof of A,. (A finite Hilbert system is a Hilbert system in which
there are a finite set of axioms and rules of which all axioms and rules are substitution
instances.)

Why Not Recursive Theories? The most obvious choice of computational theories, the recursive
theories, are not a subcanonical set - if ¢, u are recursive, the most we can say about 7 o u is that it is
recursively enumerable. We leave as an open problem whether there are submodels of the canonical
model satisfying exactly B in which all points are recursive theories.

Let a set of formulas S be called recursive if enc[S ] is recursive.

Lemma 24. Let s,t be classical theories (i.e. sets closed under classical entailment), and s be
nonempty. Then t o s is the smallest classical theory containing both t and s.

Proof. t o s contains s because for every A, A — A is in t, as this is in every classical theory. t o s
contains t, because if (A — B)isint, sois C — (A — B) for any C; choose a C that lies in s,
and we get (A — B) € to s. to s is a classical theory: let C be a consequence of ¢ o 5. Then by
compactness C is a consequence of A B; for some finitely many B;, such that A; € s, (A; = B;) € t.
Then (A A; = A B;) € t, and therefore (\ A; > C) € t,and A A; € s,thus AC €tos.

to s is the smallest theory containing #, s: let  be a theory containing ¢, s. Then for every B € t o s,
it contains some (A — B) and A. But B is a consequence of these, so Be r. Thusto s C r. O
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Lemma 25. Lett', 5" be the smallest classical theories containing t, s, where t is a set of formulas
of the form (A — B) where A, B are atoms, and s is a nonempty set of atoms. Further suppose no
atom appears in both an antecedent and a consequent in t. Then the atoms int’ o s’ are those in s
andintos.

Proof. Obviously ¢’ o s” contains all these atoms. Let C be any atom not in s or ¢ o s. Now consider
the truth function v making true exactly the atoms in s U (¢ o s). v satisfies s, and also satisfies #: let
(A — B) be in t. Since A cannot be a consequent of any conditional in ¢, v(A) = 1 iff A € S. Thus if
Ais true in v, B € t o s and therefore true, and if A is false, (A — B) is vacuously true. Therefore v is
a model of both theories #', 5", so by lemma 24, the theory T'(v) of formulas true in v is an extension
of ¢ o s’, and does not contain C,so C ¢ t' o §’. O

Theorem 26. There exist recursive formal theories t, s such that t o s is not recursive.

Proof. For each Turing machine (code) M and each integer i, assume we have unique proposition
letters (M, iy and (M), and a recursive (both ways) bijection from (M, i) — enc({M, i)) and likewise
for M — (M). Now let s be the classical theory generated by all (M, i), and ¢ that generated by all
(M, iy — {(M)) such that M halts on an empty tape within i steps. These are, in particular, B formal
theories. Both of these theories are clearly recursive. But by the previous lemma, the atomsinzo s
are exactly the (M) such that M halts in some number of steps, and therefore the halting problem
reduces to membership in ¢ o s. O

Neutral Fixed-Point Logic. Now we will introduce a logic interpreted over first-order structures
which we will call neutral fixed-point logic. This logic uses predicate expressions, each with an
associated arity, which may be primitive predicate symbols, predicate variables, or expressions of
the form (¢P)(¢, X). Here P is a predicate variable of arity |¥] and ¢ is a formula. The arity of this
expression is considered to be the same as the arity of P. Formulas are as follows:

(1) P(X) where ¥ are variables and P is a predicate expression of arity |x|
2) ory
(3) ¢
(4) Vx¢
Use the notation v[x\a] for the function which maps every variable y # x to v(y), and x to a.
Relative to a structure M and a variable assignment v (assigning both individual and predicate
variables), we recursively define (three-valued) truth of formulas and meaning of predicate expres-
sions. Formulas can be true, false, or meaningless. Predicate expressions are either meaningless
in M or have an extent in M, which is a relation on |M|. M,v | ¢ means ‘¢ is true in M with
assignment v’.

(1) P(%) is true for primitive P, or meaningful expressions P, if v[¥] € PM, otherwise false

(2) P(X)is true for variable P if v[X] € v(P), otherwise false

(3) P(%)is meaningless if P is a meaningless expression

(4) x = yis true iff v(x) = v(y)

(5) ¢ Ay is true if both ¢ and ¢ are true, meaningless if either ¢ or ¢ is meaningless, otherwise
false

(6) —¢ is false if ¢ is true, true if ¢ is false, and meaningless if ¢ is meaningless
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(7) VYx¢ is true if, for all variable assignments v = v[x\a] for a € |[M|, ¢ is true with respect to
M, V', meaningless if ¢ is meaningless with respect to any of the M, V', and otherwise false

(8) (tP)(¢, X): If Rp is a relation of arity |%] such that for all variable assignments v where
v(P) = Rp, M,v E ¢ iff M,v E P(X), call Rp a solution to the iota-expression. If there is a
unique solution Rp, then (tP)(¢, ©)¥ = Rp. Otherwise the expression is meaningless.

Commentary. Neutral fixed-point logic, like more common fixed-point logics (see [13] for refer-
ence), allows formulas to act as operators deriving relations from relations, and allows definition
of relations that are fixed points of these operators - intuitively, recursive definitions. Unlike least
fixed-point logic, we allow negative occurrences of the relation being defined in its inductive defi-
nition. but we also do not do anything to guarantee existence, as in inflationary fixed-point logic
(which uses a different notion of ‘fixed-point’ than the usual one). So for some syntactically-valid
definitions there is no fixed point. Partial fixed-point logic solves the same problem by declaring that
all such definitions define the empty relation. But we do not use such a default - for us, constructs
with no fixed point are just bad definitions, and any formula in which they appear takes no truth
value. Furthermore, these logics have ways to deal with multiple fixed points (e.g. take the least).
We do not. In neutral fixed-point logic, a definition that defines ambiguously is invalid, and formulas
containing it have no truth value.

Say that a relation R over |M| is definable (in neutral fixed-point logic) if there is a formula ¢
with free variables ¥ such that for every variable assignment v, we have M, v [ ¢ iff v[X] € R. Our
explicit subcanonical set of theories will be the theories t such that enc(t) is definable in (N, S),
where S is the successor function. We will call these theories definable theories.

A standard lemma about nesting definitions:

Lemma 27. If relations Ry, ...R,, are definable in M, and a relation S is definable in the extension
of the structure M with additional predicate symbols P; such that Pf” = R;, then S is definable in M.

Proof. Let ¢, X be the formula and vector of variables that define S. For each R; there is a formula
¥; and variables y; which define it in M. Then let ¢’ be the formula over the signature of M obtained
by replacing every instance of P;(?) in ¢ with y;[¥;\Z]. We claim ¢’, ¥ defines S in M.

From the definition of defining, and induction on the structure of ¢, we see that M,v | ¢’ iff
M, v E ¢, which happens iff v[¥] € S, so ¢’ defines S. O

So when a relation is definable in our fixed structure (N, S ), we will freely use it as if it were a
predicate symbol from now on.

Lemma 28. All recursive functions (treated as relations) are definable in (N, S').

Proof. We prove this by induction on the depth of definition of a recursive function. There is one

case for each of the six standard rules that generates recursive functions. We will use the convention

that a function f(X) is represented by a relation f(%, z) which holds iff f(¥) = z; we write “f(¥ = 2”
for this relation.

(1) The constant function f(n) = a: Since {0} is definable by Ym—(S (m, n)), by induction {a}

is definable for every natural number a. Thus f : n — a is definable: f(x) = z holds iff

(x = x) A ({a}(2)).
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(2) The successor function is trivially definable because its corresponding relation is in the
signature of (N, S).

(3) The projection function proj,; : (xi,...x,) = x;: the relation proj, (¥) = z is defined by
[(x1 = x) A Xy = X)) A (2= x9).

4) If f and gy, ...g, are definable, their composition f(g;(%),...gn(¥)) = z is defined by
321, 2 f@1s o2 2) A 1(XT oo Xy Z1) A oo 8m(X1,5 - Xy Zm)], With free variables (x1, ...x,, 7).

(5) If g, h are definable, the relation f(n, X¥) = z where f is defined by for-recursion with base
case g and recursion operation &, and n is the variable of recursion, is the extent of the
expression (tF)(¢, (n, x1,...xx, 2)), where ¢ = [(n = 0) A g(x1,..x) = 2) V (S(m,n) A
A7 [F(m, x1,..x) = 77 AN W(Z, x1,..x%) = z])]. Let F’(...) = ... be any relation with arity
|n, x1, ..Xx, z| such that for all variable assignments v mapping the symbol F(...) = ... to
F'(..)= ..., (N,8),v E ¢ iff F/(v(n),v(¥)) = v(z) holds. Tt is easy to see that f itself is such
a relation, but we need uniqueness. We prove by induction on v(n) that F’(v(n), v(¥)) = v(z)
holds iff f(v(n), v(¥)) = v(z) holds (the latter = sign is not just notation!) Base case: v(n) = 0,
F’... holds iff g(v(X)) = v(2), iff £(0,v(¥)) = v(z). Inductive case: F’ holds iff for some
7, h(z',v(X)) = v(z), where F’(v(n) — 1,v(X)) = Z’. By induction, 7’ is the unique value of
F() = 1,v(x)). Sov(z) = h(f(v(n) — 1, (X)), v(X)) = f(v(n), (X)), as required.

(6) If f(n, X) is definable, so is (un) f(n, X¥), which is a function of only ¥. First, note that the <
relation is definable, because its indicator function, being primitive recursive, is definable by
the above cases. [(un)f(n, ¥)](¥) = z is defined by f(z,%) = 0 AVn((n < z) —» A7 (f(n,X) =
7 ANZ > 0)).

|

Lemmas about Definable Theories. Let a derivation sequence for B from a set of formulas X with
source S C X be a sequence of formulas Ay, ...A, where Ag = A, A, = B, such that for each 7, one of
the following:

(1) A; €S

(2) Ai=Aj ANAgfor jk<i

(3) (Aj — A;) e Bforsome j <i

Lemma 29. X + B iff there is a derivation sequence from X to B with some finite source S C X.

Proof. First, let X + B. We construct a sequence by induction on the proof judgment.

Base case: B € X: Then the sequence (B) will do, with source {B}.

Inductive cases:

B=CAD, X+ C, X+ D: Then there are derivation sequences Ay, ...A, and By, ...B, from A
to C and A to D, with sources S ¢, S p. Then Ay, ...A,, By, ...B,, (C A D) is a derivation sequence,
because A, = C, B, = D, with source S¢ U S p.

A+ C, (C — B) € B: Then there is by IH some derivation sequence Ay, ...A, from A to C with
source S, and Ay, ...A,, B is a derivation sequence for B with source S because A, = C.

For the converse, the finiteness of the source doesn’t matter. We will do induction on the length
of the derivation sequence.

Base case: length 1. So Ag =A, =A=B,soBe€S,soX+ B.

Inductive cases:
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A, =A; NAj. So, Ay, ...A; and A, ...A; are shorter sequences, so by IH, X + A;, X + A;. Thus
XFA A Aj.
(A; = A,) € B: Then Ay, ...A; is a shorter sequence, so by IH, X + A;, so X + A,,. O

Lemma 30. The set of encodings of theorems of B is definable.

Proof. By assumption, there is a recursive predicate P(p,a) which holds exactly when p =
append(enc(A)), ...enc(A,)) and a = enc(A,), for A, a formula and Ay, ...A,, some Hilbert proof
of A,,. But since the theorems of B are just the formulas for which such a Hilbert proof exists, the
formula Ap[P(p, a)] with free variable a defines the theorems of B. O

Lemma 31. There is a definable predicate Der such that Der(p, s, a) holds iff a = enc(A) for some
formula A, and p is the encoding of a derivation sequence for A with source S, and s is a list
containing the encoded members of S .

Proof. By assumption, there is a function ip which checks whether its input is an encoded formula.
So there is also a recursive function iy, which checks whether its input is a list of encoded formulas.
We will also use the recursive predicate (-, -) which checks whether a given number is in a given list.
Let B denote the defined predicate for the set of encoded theorems of B. Let y_, be the predicate
which checks whether a number is an encoding of a formula of the form A — B. This can be defined
BY (0(poi (1) = D) A (i(posa(m) = 1) A (1= fos(pos. (1), ps2())).

Der(p, s, a) is now defined by:

(ip(p) = D A (ig(s) = D) A (pllen(p)] = a) A Vili < len(p) — (e(plil,s) vV Ijk(j < iNk <
i A plil = falpljl, plkD) Vv AT, jBT) A x-(T) A j < i A pljl = p1(T) A pli] = p-2(T)))] O

Mutually Recursive Defining Formulas. It will be convenient for the next proof to extend neutral
fixed-point logic with a further type of predicate expression, (¢tP; € Py, ...P,)(¢1, X1, ...n, %), such
that the vectors of variables X, ...%, share no variables. Let a tuple of relations R; such that for
all variable assignments v that send each P; to R;, M,v E ¢; iff v[X}] € RlM be called a solution.
The expression is meaningful iff it has a unique solution Ry, ...R,, and we will say the relations
R, ...R, are semi-defined by the expression. When the expression (tPy € Py, ...P,)(¢1, X1, ...dn, %)
is meaningful, its extent in M is Ry. Call this extended logic multiary neutral fixed-point logic.
This does not increase our defining power, as we now show.

Lemma 32. Let M be a structure that can define at least one nontrivial unary predicate P, i.e. PM
and (~P)M are both nonempty. Every relation definable over M in multiary neutral fixed-point logic
is definable over M in neutral fixed-point logic.

Proof. Tt suffices to show that the extent of a single (tP; € Py, ...P,)($1, X1, ..., Xy) €Xpression can
be defined.
Given any tuple of relations R;, consider the relation Ry of arity (3 arity(R;)) + n such that
i

Ro(Xy, ...%n, 1, ...pn) holds iff for some i € [1...n], p; € PM and for all j#iell.nl,p;¢ PM_ and
R;(%;) holds. If Ry is definable, each R; is definable, by (X1, ...X,) \ X)), p1, ..pm[P(pi)) A \ =P(pj) A
i
Ro(X, ...%,)], with free variables ;.
Given an expression E,, of the form (tP; € Py, ...P,)(¢1, X1, ..., X)), which semi-defines Ry, ...R,,

(so its extent is R;), we will show how to define Ry. Note that the vectors of variables X1, .. X

Australasian Journal of Logic (22:5) 2025, Article no. 12



741

are disjoint. Let QO be a predicate variable of arity (3, arity(P;)) + n, and let E; be the formula
i
A((X, .. )\ ), p1, . pulP(pi) A A =P(pj) A Q(X1, ...%,)]. Let ¢/} be ¢; with each instance of P;(3),
J#l

for any j, ¥, replaced with E;[X;\Y], and y; be y7 A P(pi) A \ =P(p)).
*I

We claim R is the extent of the expression '

Eg = QW1 V ...V iy, (X1..%,, P1s...Pn)).

First, we prove that R is a solution to E. Let v be any assignment sending Q to Rp. We must
prove that v[X;...%,, p1,...pa]l € Ro iff M,v £ ¢1 V ..y,,. Let V' be the variable assignment that
agrees with v except that it sends P; to R; for all i.

V[f]...fn,ph ...pn] € RQ iff

for exactly one i, v(p;) € PM, and v[#;] € R;, which holds iff

for exactly one i, v'(p;) € PM and v'[X;] € R;, which holds iff

for exactly one i, v'(p;) € PM and M, V' = ¢; (because E,, semi-defines R;), which holds iff

for exactly one i, v'(p;) € PM and M,V E 7 (because v(Q) = Rg, and E; “defines” R; if Q is
fixed to Rp), which holds iff

for exactly one i, M,V | ¢;, which holds iff

for exactly one i, M, v | ; (because P; do not occur in this formula), which holds iff

My E YLV ..y,

Next, we need to prove Ry is the unique solution to Eg. So let R}, be any solution.

Let the relations R] be those defined by the formulas E; when Q is fixed to Ry, that is, R/(X})
holds iff for some ¥;...%,, p1,...Pn, R’Q()E’l...)?n, D1, ---pn) holds. Then for every variable assignment
v mapping all the P; to R}, there is a variable assignment v = v[Q\R’Q] such that M,v E ¢; iff
MV E (,//;.k , since the E; define R} when Q is fixed to R’Q. Furthermore, for any i there is a variable

assignment v;" equal to v" except on the variables p;, such that v/’(p;) € PM and vI(pj) ¢ PM for
J # i,and M,v! | ; iff M,v" | " (because p; do not occur free in ¢; or 7). Now for every v
sending all P; to R;, M,v | ¢; for some i iff M,Vv" | 7 for some i, iff M, V)" = ; for some i, iff
VI [X1...%0, P1s ..Pnl € R’Q for some i, iff v/'[¥;] € R! for some i, iff v[¥;] € R}, which means R} must
be R; for all i because E,, semi-defines R;.

Therefore, let v be any variable assignment sending Q to R/,, and now let v' be v[P;\R;].

V[X1..X0, P1,...pn] € R’Q iff

for exactly one i, M,v | y; iff

for one i, v(p;) € PM and M, v = Wy iff

for one i, v(p;) € PM and M,V E ¢; iff

for one i, v(p;) € PM and v'[#}] € R; (because E,, semi-defines R;) iff

for one i, v(p;) € PM and v[%] € R,

which shows that R}, meets the definition of Ry.

So, Ry is the unique solution, and E¢ defines Rp. Thus we can define each R;, as argued above.

O

Lemma 33. There is a definable predicate P(n,a) which holds iff a = enc(f(n)) where f : N — ©p;
is an enumeration of all formulas with main connective V.
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Proof. As above, we can define the set of formulas with main connective V, using the f, and py, i.
Call this set O. Then P(n, a) can be defined by saying that P(0, a) holds iff a is the least encoding of
an V-formula, and P(n, @) holds iff a has not yet been enumerated, but all smaller V-formulas have.
That is,

((n=0)AO0(a) AVYB[b <a — =ODb)])V ((n>0)AO0@) ANVYb[(b < aA OBb) = Am[(m <
n) A P(m,b)]] AVm[m < n — —=P(m,a)]) O

Lemma 34 (Strengthened Lindenbaum Lemma). Let t be a definable theory, and let A be a definable
set of formulas disjoint from t and closed under disjunctions. There exists a definable prime extension
p of t, which is disjoint from A.

Proof. This proof contains the standard construction for the Lindenbaum extension in relevant logic
settings, and we show that the extension obtained this way is indeed definable.

By lemma 33, the formulas with main connective V are enumerated, L; V Ry, L, V Ry, L3 V R3, ...,
such that the relation ‘a is the encoding of the n-th V-formula’ is definable.

Define a family of sets t;. inductively as follows:

[ ) tg =1

° tlj+l = t} if tlj ¥ L;V Rj; otherwise, if (t’j U{L;}) is disjoint from A, tlj+1 = t’j U{L;}, otherwise
t’j+1 = t’j U {R;}.
i+1 _ i

o 1) = ijtj

Letp=J tf). We claim p is the desired prime extension.

First, p isl a theory. Suppose that p + A. Then p + A V A, by an axiom of B, and there is a finite
subset of p which derives A V A, so for some i, tf) + AV A. There is also k such that AV A = L, V R;.
Thus, t]’c AV A, so either L; or Ry is in t]’m, but both of those are A, so A € t]’m C t6+1 C p. Thus p
contains A, as needed.

Second, p is prime. Suppose AV B € p. ThenAV B € tf) for some i, and AV B = L; V Ry for
some k. SOAV B € t;a SO t]’C F Ly V Ry, so by definition t;<+1 contains either L; or Ry, that is, A or B.
So either A or B is also in the larger set p.

Third, p is disjoint from A. Suppose p and A are not disjoint. Then p derives some formula in A.
Then tf) derives a formula in A for some i, and so does tg for all i > i. So let i be the largest i such
that t6 derives nothing in A. There is such a largest, because tg is disjoint from A by assumption
and is a theory. Then since tf)” derives something in A, some tj. does as well. Again let j be the
largest j such that tj. does not derive any formula in A. So there is A € A such that tj. .1 FA. So
t;+1 * t;.. So, by definition, it must be that t’j F L; V R}, and either: (t’j U {L;} is disjoint from A and
t’j U{Lj} A, or (t’j U {L;} overlaps A and t;. U {R;} + A. The former case is impossible because
A € Aand (7; U{L;}. In the latter case, there is B € A such that 7, U {L;} - B, and 7, U {R;} - A. But
. LjV Rj,sot;+ BV A, which is in A since A is closed under disjunctions, a contradiction.

Finally, p is definable. We will semi-define multiple relations simultaneously, using multiary
neutral fixed-point logic, and by lemma 32, if we can define p in terms of those relations, p is
definable.
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Let T'(a, 1, j) hold if a = enc(A) for some formula A and A € t; Let D(a, i, j) hold if a = enc(A)
and A is derivable from t’l Let D;(a, i, j) hold if a = enc(A) and A is derivable from t; U{L;}. Let
L(l, i, j) hold if / is a list of encodings of formulas drawn from t; and Ly (l,1, j) hold if / is a list of
encodings of formulas drawn from tj. U {L;}. We write down the variable vectors and formulas that
will semi-define these relations, in the format: ‘Predicate P;: variables X;: formula ¢;.” These will
be assembled into an expression E = («(T, D, Dy, L, L1))(¢1, X1, ...¢5, X5). We will reuse variable
names for ease of reading, but in E each x; will have different variable names. We can freely use
€ t and € A as predicates because these sets are definable (we really mean, € enc(f) and € enc(A),
of course). We use some other common syntactic abbreviations for readability. Let L; V R; be the
Jj-th disjunction in our enumeration (which is also definable). Let Der(p, s, a) mean that p is a list
of encodings of formulas which form a derivation sequence, with source encoded by s, deriving a
formula encoded by a (Lemma 31).

(D) T:(ai)):j=0Aact)V(j=0Ai#0ATKT(i-1,k,a))V(j #O0AT(a,i, j—1)V(j #
OAa=-enc(Lj) AVb(Dr(b,i,j—1) = b g AN))V(j#0ATb(Dr(b,i,j—1)AbeA)Na=
enc(R;))

(2) D :(a,i,)): Ap, s[Der(p, s,a) A L(s, 1, j)]

(3) Dy : (a,i,j): dp, s[Der(p, s,a) A Li(s,1i, j)]

@) L:(1)):len()) =0V (LUO,len()) — 11,1, j) A T{[len(D], i, j))

(5) L: (i, :lenl) =0V (LU0, len(]) - 11,1, j) A (T[len(D)], i, j) V I[len(])] = enc(L))))

By inspection, the intended meanings of T, D, etc. listed above are a solution to E. It remains to
prove that they are the unique solution.

We prove this by induction on i, j: Suppose v is a variable assignment and v(T"), v(D), v(Dy), v(L), v(Lyr)
(call these P;) satisfy the condition that v[x;] € v[P;] iff (N, S),v = ¢;.

First of all, for every i, j it’s easy to see that L(, i, j) holds iff / is a list of elements of {a | T(a, i, j)},
and Ly (a, i, j) iff [ is a list of elements of {a | T(a, i, j)} U {L;}, by induction on len(/)

Then for all i, j, T(a, i, j) holds iff a € enc[t;‘.], D(a, i, j) holds iff t; FA,a = enc(A), etc.

For all 7, j: (we will abuse notation and say enc[X] + enc(A) when X + A):

(a,i, j) is in D iff the defining formula holds, iff there are lists p, s where s is drawn from
{b | T(b,i, j)}, such that Der(p, s,a) holds, iff {b | T'(b, i, j)} F a, by lemma 31.

Likewise, (a,i, j) € Dy iff {b | T(b,1, j)} U {L;} + a. So it remains only to prove that for all i, j,
T(a,i, j)holdsiffa € enc[tj.], which we now do by induction on i, j.

Base case: i, j = 0. Now (a, i, j) € T iff the defining formula holds, iff its first disjunct holds (the
other two assert either i or j is not 0), iff ‘a € ¢’ holds, iff a € enc[¢] = enc[tg].

Inductive cases:

j > 0: Then T'(a, i, j) holds iff one of the last three disjuncts of the defining formula holds, and
these hold just in the same three cases from the definition of ti., because by IH and the claims above,
D(enc(L; V R)),1, j— 1) holds iff tl}'—1 derives L; V R;, and so on - note the occurrences of D and Dy,
all have j — 1, so the IH can be applied to them.

i > 0,j=0: then T(a,i, j) holds iff the second disjunct of the defining formula holds, iff for
some k, T(i — 1,k,a) holds, iff a € enc[# '] for some k, by IH; this holds iff a € Ugenc[z} '] =
enC[Ukt,i_l] = enc[tf)], as required.
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This concludes the induction.
Therefore, t;. is semi-definable, so by lemma 32, it is definable, and thus p is definable (by

3i, jIT(a, i, HD- -

Lemma 35. Let S be a definable set of formulas. Then the disjunctive closure of S is definable.

Proof. We define the relation ‘a is a disjunction of depth < n in formulas from S, as follows:
D) ((n=0)AS@)V((n>0A3db,c,m,m'[Dim,b) ADm’',c) Am <nAm <nA(a=
Fo(b, N, (n,a)]

Then the disjunctive closure is defined by An(D(n, a)) with free variable a. O

Theorem 36. The definable formal theories are a sub-canonical set.

Proof. There are several postulates to prove.

)
2)

3)
4
(&)

(6)

B is a definable set. This is lemma 30.

Let A be a fixed formula. Then (A) is a definable set because it is just {B | {A} + B}, which
is defined by dp, s[Der(p, s,a) A Yx[€(x, s) = x = a]], with free variable a.

Let p be a definable prime theory. Then its dual p* is definable by (ip(a) = 1)A=(€ p)(f-(a)),
with free variable a.

Let ¢, u be definable sets. Then ¢ o u is defined by

di[(e H(@) A (€ w)(p-.1() A (a = p 2(i))], with free variable a.

Let ¢, u be definable theories and p a definable prime theory. Then there are prime extensions
q,r of t,u respectively such that gou C p and t o r C p. To construct g, take the set A
which is the disjunctive closure of {A — B | A € t, B ¢ P}. This set is disjunctively closed.
It is also disjoint from s, because if not, there is some \/(4; — B;) in s such that A; are
in t and B; are not in p. Then by a theorem of B, A A; —» \/ B; € s. But A A; € ¢, and so
\/ B; € p, so one of the B; is in p because p is prime. This is a contradiction. Furthermore,
Ais definable. {A — B| A € t,B ¢ P} is defined by:

X—(@) A (€ (p=.1(a)) A —(€ p)(p- ) with free variable q,

and so its disjunctive closure is definable by lemma 35. So all the conditions are in place
to use lemma 34, which gives us a definable prime extension g of ¢ disjoint from A, which
implies that g o u C p.

To construct r, we use A the disjunctive closure of {A | AB[A — B € t,B ¢ p]}. This

set is disjoint from u because if not, there is some \/ A; in u such that there exist B; where
(A; — B;j) € tand no B; is in p. But then A(A; — B;) € ¢, and it’s a theorem of B that
ANA; = B) > (\VA; =\ B),so(\/A; = \/ B;) € t, thus \/ B; € p, so one of the B; is in
P, a contradiction. A is disjunctively closed and by a similar argument to the last case it is
definable. So lemma 34 constructs the r we want.
For every definable theory ¢ and formula A not in ¢, there is a definable prime theory p
extending ¢ that does not contain A. For, let A be the disjunctive closure of {A}. Then A is
definable, so we can use lemma 34 if only we can prove A is disjoint from ¢. But for every
disjunction \/ A of formulas from {A}, \/ A — A is a theorem of B, so if A and ¢ overlapped,
t would contain A, a contradiction.

O
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Corollary 37. The definable formal theories, with P,{, o, *,,C, v defined as in the canonical model,
are a model satisfying exactly the theorems of B, and having uncountably many missing theories.

6. SET-THEORETIC CONSTRUCTION

We can also use set theory to obtain a countable subcanonical set. The main advantage of this
approach over the last section is that we do not have to re-prove the Lindenbaum lemma in a new
setting. The carry-over of known results will be much more automatic. But arguably the model
obtained is more interesting than we got from the Lowenheim-Skolem theorem - at least if you think
you understand something about countable standard models of ZF.

In this section, all set-theoretic formulas are in first-order logic with equality. This language will
be our ‘meta-language’, and propositional logic our ‘object language.” The concept of absoluteness
will be very important below. Use the notation U,v = ¢ for ‘when the free variables of ¢ are
assigned by v, ¢ is really true’, where v may assign variables of ¢ to arbitrary sets. To avoid any
impression of illegitimacy, we will define this notation outright. We assume our first-order signature
has no predicates except €, and only constant and variable terms. Our notion of truth will be relative
to an assignment g of constants to some objects.

First, define the interpretation of terms:

(1) xY" = v(x) when x is a variable

(2) ¢ = g(c) when c is a constant

(1) UyvE xeyiff x¥ eyt

Q) UvEsryifUvEsand U,v Ey

B) UvE-9iffUviEge

4) U,v E (Vx)¢ iff for all sets y, U, v[x\y] E ¢

Now say that ¢ is absolute for a model S if, for all v mapping into S, we have S,v E ¢ iff
U,v E ¢.

Call a model of the € predicate (and possibly some constants) a model of set theory. We will call
amodel S of set theory standard if, for all x,y € S, x €5 yiff x € y. Call § transitive if forall y € §
andallxey, xeS.

We will sometimes speak of concepts C, by their informal names, being absolute; when we do
this, it means ‘there is a formula ¢(x) such that U, [x — a] E ¢(x) iff C holds of a, and ¢ is absolute’
- in other words, some absolute formula formalizes the notion C.

Let the bounded quantifiers Vx € y and dx € y be defined as abbreviations for Vx[x € y — ¢] and
dx[x € y A @]. Clearly, =(Vx € y)—¢ is logically equivalent to (Ix € y)¢.

Lemma 38. Let S be a transitive standard model of set theory. Let ¢ be a first-order formula built
up from absolute formulas for S using only the bounded quantifiers, A\ and —. ¢ is absolute for S.

Proof. There is some set A of absolute formulas such that ¢ is built up from A using -, A and
bounded quantifiers. By induction on the formula complexity of ¢, treating subformulas in A as
level O:

Base Case: ¢ € A. Trivial.

Inductive Cases:

o=y ANY:SvEQiIffFS,vEyYandS,vE Y, ifUvEyand UyvE Y, ifft UyvE .
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d=—yw:S,vEQITS,vEYITUvEyiff UvE .
¢ =(x ey: S,vE ¢iff forall z €5 v(y), S,v[x\z] E v, iff for all z € v(y), S,v[x\z] E ¢
(because S is standard transitive), iff for all z € v(y), U, v[x\z] E ¢, ifft U,v E (Yx € y)y. O

Note that in a standard model, x € y and x = y are absolute. x € ¢, ¢ € x, ¢ € d are also absolute
if § happens to assign c, d to g(c), g(d).

Corollary 39. Let S be a standard transitive model. If the only logical constructors in ¢ are A,V,—
and bounded quantifiers, and for all constants ¢ appearing in ¢, g(c) = 5, then ¢ is absolute for S.

Define the deep bounded quantifiers (Vx € y) for each n as abbreviations for

o Ifn=1:(Yxe' y)p=(Vxeyo

o Ifn>1: (Vx €' y)p = (¥Ym €~ y)(Vx € m)¢
In other words, ‘for all x nested n-deep inside y’. Define (dx €" y) analogously. Note that these
abbreviations only use bounded quantifiers, so lemma 38 applies to formulas using them.

For a set U, let a rule over U be a pair (B, H) where B, H C U. Say a subset U’ of U is closed
under B_Hif B¢ U’, or H C U’. U’ is closed under a set of rules if it is closed under each of the
rules in the set.

Most of the following tedious list is standard background, but note the last few cases:

Lemma 40. For any transitive standard model of set theory, the following are absolute:

(1) x={y1,...yn}

(2) for somey,z, x = (y,2)
(3) x=2

(4) R is arelation

(5) fis a function

(6) f is an injective function
(7) f has range (image) R
(8) f has domain D

9) fo=y

(10) xCy

(11) x and y are disjoint
(12) x=10

(13) x=S5()

(14) x=yxz

(15) x=w

(16) R is a set of rules over U
(17) U’ is closed under the set of rules R over U
(18) R is a set of rules over U, U" C U and X is the smallest superset of U’ closed under R

Proof. Most of these we prove by just displaying formulas that define them, which you can inspect
to see that they only use bounded quantifiers and absolute predicates from higher up the list. The
result follows for these cases by lemma 38.

(1) (Vze)|z=yV..VZ=Y]AOI €X)A ... Ay, € X)
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(2) This is to say x = {{y}, {y, z}} using the standard encoding of pairs, so we can write (Jda, €
x)(EIayz €Ex)(dye ay)(Hz € ayz)[ay ={y1 A Ay; = {v. 2}l

(3) Same as above, omitting the quantifiers on y, z.

(4) (Yx e B[y, z[x = (y, 2]

(5) f is a relation and (Yp,q € /)(¥y,z € p)¥y.2 € Qlp = 0, A g = .2 A =
V) —»z=71]

(6) f is a function and (Yp,q € f)(¥y,z € p)(¥y,Z € Ql(p = 1D Ag =)A=
) - y=y]

(7) fis arelation and (Vp € f)(¥y,z €2 p)lp = (,2) = z € R] A (Vz € RAp € Ty €?
plp = (,2)]

(8) fis arelation and (Yp € f)(Vy,z € p)ip = (0,2) = y € DI A (¥y € D)Ap € )3z €?
plp = (,2)]

9) @f € H3a.b e HIf =(@b)Aa=xAb=y]

(10) (Vz e x)lz eyl

(11) (Vz € x)[~(z € y)]

(12) (Vz € x)[~(z € x)]

(13) (Vzexlzey) Vz={yDIA(Vzeylz € x] ATz € X)[z = {y}]

(14) (Ve € x)(dey € y)(de; € 2)[e = (ey,e.)] A (Ve, € y)(Ve; € z)(de € x)[e = (ey, ¢;)]

(15) eex)le=01ANzex)@Z e =S@QIANze x)(z=0)Vv 37 € x)[z = S]]
To see that this does define w in the real universe, note that if x satisfies this formula it
contains O = () and is closed under successors, so x contains all natural numbers. Suppose
for contradiction x contains some zq that is not a natural number. Then zg is not (), so by the
third clause, there is z; € x where zg = S (z1). But if z; is a natural number, z( is a natural
number, so z; is not a natural number. And by the nature of successors, z; € zp. Repeating
this process constructs an infinite descending chain of sets, contradicting the Foundation
axiom.

(16) (Yre RY@H,B > nNir=(H,B)AHC U A BC U]

(17) R is a set of rules over U, and (Yr € R)\VYH,B €* R)[(r = (H,B)) A(HC U’) —» (BC U")]

(18) For this one, our strategy is different. We prove that, if S is a transitive standard model,
for all U’,R in S, the smallest superset of y closed under R is indeed in S. Then, since
being a closed extension is absolute, the smallest closed extension of U’ in S and the
smallest closed extension of U’ among all sets are the same set - so although it contains
an unbounded quantifier, the formula ‘X is closed under R and U’ C X and (VZ)[(U’ C
Z) A Z is closed under R] — X C Z] is absolute.

Proof of claim: For R, U € §, consider the ‘step’ operator T : A — {B | dH(H, B) €
R, X C A}, defined on subsets of U in S'. T is also in S, because if A is in S, so is T'(A), as it
is the subset of U defined by {B | AH[(H,B) € R A H C A]}, so T(A) € S by the axiom of
restricted comprehension. Thus, all the pairs (A, T(A)) are in the set P° (U) x P° (U), which
isin §. Then by comprehension again, (the graph of) 7" is a member of S. Now define the
function A,y : WS - PS(U) given by Ag = A, A1 = T(A,), which is in S by the recursion
theorem. We can then define {x | A(n € w®)[x € A,]} as a subset of U by comprehension.
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But since w is absolute, w® = N, so this is exactly |J T"(A), the set of objects contained in
neN
every superset of A closed under R.

We will also use a variant of the “X;” lemma.
Lemma 41. Let ¢ be absolute in a model S of set theory. Then if S,v = AXp, U,v E AXp.

Proof. If S,v E AXg, then S,v[¥\Z] E ¢ for some Z, but then by absoluteness U, v[X\Z] E ¢, so
U,v E 3%p. O

6.1. Set Theory with Logical Vocabulary. Let ZF+L (ZF with a distinguished logical vocabulary)
be the first order theory which has as its language a binary predicate € and constant symbols X,
2*, fas fvs [, f, and countably infinitely many constant symbols A,. It is axiomatized by the
axioms of ZF, plus the following:

(1) £ C ¥, X isinfinite,

(2) AV, > (9?2 - 2%,

(3) =: ¥ - %¥,

4) fr, fv, fo, f- are injective and have disjoint ranges,

(5) the ranges of fx, fv, f-, f- are disjoint from Z,

(6) T is the smallest set containing X and closed under fi, fv, f—, f-

(7) A, e Zforalln

(8) A;# Ajforalli# j

Let a model M of this theory be called standard if its domain consists of sets and €/ is the actual

membership relation on those sets. Call M transitive if, whenever y € M and x € y, x € M. Call a
model well-labeled if M = {AQ’I | n € N}

Lemma 42. [f there exists a countable transitive standard model of ZF, there exists a countable
transitive standard well-labeled model of ZF+L.

Proof. It is well-known that we can prove (without using the axiom of choice) that some sets and
functions do exist satisfying the axioms 1-6 above, e.g. by making formulas finite sequences of
symbols from the alphabet, connective symbols, and parentheses, and coding all these symbols with
natural numbers. This existence is thus a theorem of ZF; call it A%¢ where ¥ has six variables. So,
let S be a countable transitive standard model of ZF. § E 3%¢, so there is some assignment v of
Xinto S satisfying ¢, that is, axioms 1-6. Now extend S to a model S’ by letting s, (Z*)S', ff',
etc. be the elements of v[¥]. v(X) is actually infinite, and countable because S is countable. For this
larger signature, we will define absoluteness using g(X) = &5 ' g(Z) = (XS ", ete.

Axioms 3-6 are true of v(X), v(Z*), etc: For axioms 2 and 3 this is obvious from lemma 40,
because these are absolute in S'. For axioms 4 and 5, we use lemma 41. ¢(R, f,X) =‘R is the range of
f and R is disjoint from X’ is absolute, using lemma 40, and therefore since S, v = AR@(R, f, X), then
also U,v | JR¢(R, f,X), that is, there is a set R that is really the range of v(f) and it is really disjoint
from v(X). Axiom 4 is similar. For axiom 6, define the set of rules R = {({x,y}, {f(x,)}} | x,y €
25 e {v(fa), v(fv), v(f=), v(f-)}}. This is clearly definable by a formula, and its interpretation in
S’ is a set of rules over *. The claim that X is the smallest subset of X* containing X and closed
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under these rules is absolute, so (X*)% ' really is the smallest such set. Furthermore, the formula
(Yr € RY3AH, B €2 Rix,y,z € ¥)[r = H,B)ANH = {x,y} AB ={z} A fa(x,y) = 2] AVxX,y,z €
T [(f(x,y) = 2) = (Ir € RYAH,B €2 R)[(r = (H,B) A H = {x,y} A B = {z}]] is absolute and
expresses ‘R contains exactly rules of the form {x, y}, f(x,y)’ - this can be easily extended to cover
all four functions fx, fv, f—, f-. Therefore closure under these rules is really equivalent to closure
under the f7s, so (2*)% is really the closure of X5 under the f5 "s.

Now S’ satisfies 1-6, which are also actually true of S

Then extend S’ to a model S” evaluating the symbols A,: Choose any bijection i : N — X5, and
let AS " = i(n). So S” satisfies 7-8 and is well-labeled. O

From now on, we fix a particular standard transitive countable well-labeled model S of ZF+L,
where the constants A, in the signature are the propositional vocabulary for our propositional
formulas. We fix an encoding of propositional formulas A as elements of S:

(1) If A is an atom, enc(4) = AS

(2) If A = B A C, enc(A) = f3 (enc(B), enc(C))
(3) If A= BV C, enc(A) = f5 (enc(B), enc(C))
(4) If A= B — C, enc(A) = f5 (enc(B), enc(C))
(5) If A =-B, enc(A) = f-(enc(B))

Lemma 43. enc is injective and onto (X*)5.

Proof. Injective: Let A, B be different formulas. We will do induction on the sum of formula
complexities of A, B. Base case: If A, B are both atoms, enc(A) # enc(B) because of axiom 8.
Inductive case: Many cases are trivial. If only one of A, B is an atom, their encodings are distinct
by axiom 5. So let both A, B be non-atoms. Then if they have different main connectives, their
encodings are distinct by axiom 4. So we only need to use the I[H when the main connectives of
A, B are the same. Suppose (wlog) that both are A, s0 A = A’ AA”, B= B’ A B”. By axiom 4, f
is injective, so if enc(A) = enc(B), we have (enc(4”),enc(A”’)) = (enc(B’),enc(B’’)). But either
A" #A” or B # B”, or else A, B would be the same formula, so we have contradicted the IH.
Onto: For contradiction, let x € (£*)S but not an encoding of a formula. Then since S is well-
labeled, x ¢ =5. Now the set (£*)° \ {x} contains =5 and is closed under f%, ..., so (£*)5 was not the
smallest such set, a contradiction. O

From now on we will not distinguish between a formula and its encoding when no confusion can
arise. Let the encoding of a set of formulas (such as a theory) be its enc-image. The countable B
submodel we extract will consist of the theories whose encodings happen to be members of S'.

Now we can say things like this:

Lemma 44. For any object-language formulas Ay, ...A,, the statement ‘for some substitution o,
By, ...B, = enc(A0),...enc(A,0)’ (where B; are regarded as free variables) is absolute.

Proof. By induction on the total formula complexity of Ay, ...A,, we show that there is a formula
®a,..A,(B1, ...By) over the language of ZF+L defining this concept and it is absolute.

Base Case: complexity = 0. Then all A; are atoms. ¢4, .4, = (\; Bi € Z*)A A (B; = Bj), where
(i.)eD
D is the finite set of (7, j) such that A; = A;. Any B;’s satisfying this are indeed encodings of formulas
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(since enc is onto X*), and for A; = A}, B;, B; encode the same formula - thus o : A; — enc”1(B))
is the desired substitution. Conversely, if B; = enc(4;0) for some o, the formula ¢4, 4, clearly
holds. This formula is absolute, as it is quantifier-free.

Inductive Case: One of the A; has a main connective. Suppose without loss of generality it is A,
S0 A; = A;j; AAp. Then by IH there is an absolute formula F(B1, ...B;—1, Bj1, Bi2, Bi+1, ...B,) defining
encodings of substitution instances of Ay, ...A;—1,A;1,An,Ai+1, ...An.

Let ¢4,,..4,(B1,...By) be AB;1, Bip € Z*[F(By, ...Bi-1, Bi1, B2, ...By) A Bi = fa(Bi1, Bi)].

Clearly this defines the desired concept, and it is still absolute because the quantifier is bounded
by X*. O

Remember that we have identified formulas with their encodings, so it makes sense to say ‘the
logic generated by a Hilbert system H’ is a subset of (X*)5.

Lemma 45. For any finite Hilbert system H, ‘the logic generated by H’ is absolute, and defines a
set that exists in S .

Proof. There are finitely many axioms {A, ...A,} and rules {Ry, ...R,,} of which all axioms and rules

of H are substitution instances. Then we can define the set of axioms of H by
n

\/[x is a substitution instance of A;],
1
which is expressible and absolute by lemma 44.

Each Hilbert rule R; = % can be thought of as the ‘rule’ (as defined above) ({B; 1, ...Bix}, {H;}).

Now the substitution instances R’ of this rule can be defined by the formula

(AB,H € R)(3B;,,..Bj, € B)3H] € )[R = (H,B) ANH = {H}} AB = {B],..B/;} A
Blf’ P H are encodings of a substitution instance of B; j, H;].

Thus we can prove the existence of the set of rules of H (up to encoding) using the comprehension
axiom. Now the logic of H is the smallest set containing the axioms and closed under the rules, in
the same sense that we dealt with above - so by the final point of lemma 40, the logic is definable

and absolute. O
Lemma 46. Being a formal theory is absolute.

Proof. A set of formulas is a theory iff it is closed under the following set of rules: {({A, B}, {fa(A, B)}) |
A,B e 2} U{({A},{B}) | f—~(A, B) € B}, where B is the logic B, which is definable by an absolute
formula by the last lemma. Now each of these rules is in S, as can be proven with the pairing axiom,
because they are finite. By comprehension, the set of these rules is in S. Furthermore, this set is
absolute (because quantifiers may be bounded to X*). So, the predicate ‘T C X* and is closed under
these rules’ is absolute, by lemma 40. O

Lemma 47. Being a prime set is absolute.

Proof. ‘X is prime’ is defined by (VA € X)(VB,C € £*)[A = f,(B,C) —» (B € X Vv C € X)], which
has only absolute predicates and bounded quantifiers. O

Theorem 48. The set of formal theories that are in S are a subcanonical set.
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Proof. Let C be the interpretation of the concept ‘formal theory’ in S. By lemma 46, this is the set
of all formal theories in S'. We prove each of the conditions for subcanonicalness. Our strategy is
this: each condition is of the form YX[R’(X¥) — JtR(z, X¥)], where R, R’ are absolute properties. Each
condition is also a theorem of ZF (since the actual set of all theories really satisfies all the conditions
to be subcanonical, and this is provable in ZF).

Suppose we have objects ¥in S really satisfying R’. That is, letting v[y] = ¥, U,v E R’(¥). Then
by absoluteness, S, v | R’(y). Since S is a model of ZF, S, v | 3tR(¢,¥). Thus for some extension v’/
of vtot, S,V E R(t,¥). Therefore U,V = R(t,¥), which means R(V'(¢), X) really holds, and v'(¢) € S.
Thus the condition YX[R’(¥) — 3tR(t, X)] really holds over the sets that lie in .

For each case we will merely prove that the conditions R, R’ are absolute, usually by showing a
formula defining them, which can be seen to be absolute by the above lemmas.

(1) B has a finite Hilbert system, and therefore is defined by an absolute formula.

(2) Foreach A, (A)isin §S. For, as in lemma 46, we can define an absolute set of rules, closure
under which defines theoryhood, and we can define A, and by the last point of lemma 40,
the smallest theory containing A is absolute.

(3) The relation of ¢ o s to ¢, s is defined by the formula (VB € Z*)(B € x & (A € X¥)[A €
s A (f-(A, B) € 1))], which is absolute by its form.

(4) Similarly, the relation of p* to p is defined by (VA € Z*)(A € x & fL(A) ¢ p).

(5) The relation of ¢, u, p is definable by: p is prime, and (VI € £)(VA € u)(VB € [ =
f-(A, By ANA € u — B € p]. And the relation of ¢, u, g, p is definable by: g is prime, f C g,
and (VI € ¢)(VA € w)(¥B € Z)[I = f5(A,B) AA € u — B € p]. Likewise for t,u, r, p.
These are all absolute formulas by inspection.

(6) The relation of 7 to A is simply that ¢ is a theory and A ¢ ¢. The relation of ¢, A, p is that p is
a prime theory and ¢ C p and A ¢ p, all of which are absolute.

O

CONCLUSION

We have proven that there are frame models of B that differ from the canonical model in two
important ways, indicating that the semantics of B is justified not only by reference to the space of
B formal theories, but to a somewhat more general family of theory spaces. In fact we can remove,
not just some theories, but most of the theories, from the canonical model, and not invalidate any
theorems of B. We can also have points in theory spaces that do not look like formal theories,
because they are not individuated by the set of formulas they satisfy. Are such twin points a
problem for the interpretation of points as ‘theories’? Should a realistic frame semantics make them
impossible? We have no strong opinion on this, and leave it for future discussion.

Most of the methods in this paper can apply to models for stronger relevant logics as well (for
the argument of section 4, this is as easy as adding to BMod some first-order axioms translating
additional semantic postulates).

Unfortunately, the most explicit ‘small’ model of B we obtained still contains all B theories that
are in the recursive hierarchy, which are probably all the theories most people will ever need. In that
sense this model still looks pretty canonical. Open problems: is there a model M of B such that the
theories {I" | Ar € T[T = 1]} lie in a finite level of the recursive hierarchy? On the other hand, are
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there current philosophical or mathematical theories that, idealized as propositional theories, are not
neutral fixed-point definable? If there are any, we have shown that the existence of theories of this
kind has no impact on the (proposition-level) rules of theory-building (theorems of B).
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